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This study deciphers the topological sensitivity as
a tool for the reconstruction and characterization
of impenetrable anomalies in the high-frequency
regime. It is assumed that the anomaly is simply
connected and convex, and that the measurements
of the scattered field are of the far-field type. In this
setting, the formula for topological sensitivity – which
quantifies the perturbation of a cost functional due
to a point-like impenetrable scatterer – is expressed
as a pair of nested surface integrals: one taken over
the boundary of a hidden obstacle, and the other over
the measurement surface. Using multipole expansion,
the latter integral is reduced to a set of antilinear
forms featuring the Green’s function and its gradient.
The remaining expression is distilled by evaluating
the scattered field on the surface of an obstacle via
Kirchhoff approximation, and pursuing an asymptotic
expansion of the resulting Fourier integral. In this
way the topological sensitivity is found to survive
upon three asymptotic lynchpins, namely i) the near-
boundary approximation for sampling points close
to the “exposed” surface of an obstacle; ii) uniform
expansions synthesizing the diffraction catastrophes
for sampling points near caustic surfaces, lines,
and points; and iii) stationary phase approximation.
Within the framework of catastrophe theory it is
shown that, in the case of the full source aperture, the
topological sensitivity is asymptotically dominated by
the (explicit) near-boundary term – which explains
the previously reported reconstruction capabilities
of this class of indicator functionals. The analysis
further shows that, when the (Dirichlet or Neumann)
character of an anomaly is unknown beforehand, the
latter can be effectively exposed by assuming point-
like Dirichlet perturbation and considering the sign of
the leading term inside the reconstruction.
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1. Introduction
Waveform tomography and in particular inverse obstacle scattering are essential to a broad
spectrum of science and technology disciplines including geophysics, oceanography, optics,
aeronautics, and non-destructive material testing. In general the relationship between the
wavefield scattered by an obstacle and its geometry (or physical characteristics) is nonlinear,
which invites two overt solution strategies: i) linearization via e.g. Born approximation and
ray theory [13], or ii) pursuit of the nonlinear minimization approach [44]. Over the past two
decades, however, a number of sampling methods have emerged that both consider the nonlinear
nature of the inverse problem and dispense with iterations. Commonly, these techniques deploy
an indicator functional that varies with spatial coordinates of the trial i.e. sampling point, and
projects observations of the scattered field onto a functional space reflecting the “baseline”
wave motion in a background medium. This indicator functional, designed to reach extreme
values when the sampling point strikes the anomaly, accordingly provides a tomogram via
its (thresholded) spatial distribution. Examples of such imaging paradigm include the linear
sampling method [21] and the factorization technique [34] in the context of extended (i.e. finite-
sized) scatterers, as well as the MUSIC algorithm [24] and the direct approach [8] as techniques
catering primarily for point-like targets.

Another sampling take on inverse scattering, that motivates this study, is the method of
topological sensitivity (TS) [29, 32]. Stemming from the framework of shape optimization [39], this
technique has emerged as an effective tool for the waveform tomography of extended obstacles in
acoustics [14, 18, 19, 29, 33], electromagnetism [35, 36], and elastodynamics [1, 9, 15, 20]. Formally,
the TS quantifies the leading-order perturbation of a given misfit functional when an infinitesimal
scatterer is introduced at a sampling point in the reference domain – being imaged for obstacles.
From the application viewpoint, the appeal of TS resides in its forthright computability as a
bilinear form in terms of two (free and adjoint) forward solutions for the reference domain.
Following the heuristic argument, this quantity is then used as obstacle indicator by identifying
the support of its pronounced negative values with an anomaly.

Despite the mounting numerical [9, 15, 20, 29, 36] and experimental [26, 43] evidence of the
imaging capability of the method in a variety of sensing configurations, a theoretical justification
of the TS as an obstacle indicator function is still lacking. So far, [27] established the analogy
between the topological sensitivity and time reversal, while [10] elucidated the TS reconstruction
of a) point-like anomalies, and b) extended weak anomalies in the sense of small material contrast
(Born approximation) and/or low excitation frequency. Further, [5] explained how the TS discerns
small acoustic obstacles, and [4] exposed the link between the TS and error backpropagation.
To date, however, the reported ability of TS to reconstruct obstacles of arbitrary (finite) size
and contrast has eluded both physical understanding and rigorous justification. The problem
is highlighted by the repeated observations [19, 20, 29, 43] that at higher frequencies, the usual
reconstruction heuristics does not apply for the negative TS values tend to localize in a narrow
region “about the boundary” of an anomaly [19] – rather than canvassing its support.

To help bridge the gap, this study focuses on the imaging by topological sensitivity of
impenetrable (Dirichlet or Neumann) obstacles in the short-wavelength regime. First, the
expression for the germane indicator functional is reduced, via multipole expansion and Kirchhoff
approximation, to a Fourier-type surface integral over the illuminated part of the anomaly’s
boundary. Making use of the high-wavenumber hypothesis, the latter is distilled to three distinct
asymptotic representations, namely i) the near-boundary approximation for sampling points
within few wavelengths from the “exposed” surface of an obstacle; ii) diffraction catastrophes
(of codimension less then four) for sampling points near caustic surfaces, lines, and points; and
iii) non-uniform i.e. stationary phase approximation. Under the premise of a single illuminating
(plane) wave, it is found that the distribution of topological sensitivity, while carrying hints
about the shape of an anomaly via the near-boundary contribution, is controlled by the caustics.
By way of the catastrophe theory and diffraction scaling laws, on the other hand, it is shown
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that in the case of the full aperture of illuminating wavefields, the topological sensitivity is
asymptotically dominated by the (explicit) near-boundary term – which explains the evidenced
imaging capabilities of this class of indicator functionals. This result further unveils the new
reconstruction logic at short wavelengths where the boundary of an anomaly is obtained as a
zero level set of the TS field separating its extreme negative and extreme positive values. From
the practical point of view, such paradigm allows for obstacle reconstruction without the use
of an ad-hoc threshold parameter, where the sign of TS inside the reconstruction can be used
to identify the anomaly type (if unknown) as either Neumann or Dirichlet. The analysis is
accompanied by numerical results and an application toward obstacle reconstruction to a recent
set of experimental data [43].

2. Preliminaries
Consider the inverse scattering of time-harmonic scalar waves by a simply connected, convex, and
impenetrable obstacle D⇢B

1

⇢ R3 (of either Dirichlet or Neumann type) with smooth boundary
S = @D, where B

1

is an open ball of radius R
1

centered at the origin. On denoting by ũ the
scattered field generated by the action of an incident field ui on D, the total field

u(⇠) = ui
(⇠) + ũ(⇠), ⇠ 2 R3\D

is monitored over a closed measurement surface � obs
= @B

2

, where B
2

is an open ball of radius
R

2

= ↵�1R
1

(↵<1) centered at the origin, see Fig. 1. The reference background medium is
assumed to be homogeneous with wave speed c and mass density ⇢.

Objective. The goal is to reconstruct D, and to identify is character (as either sound-soft or
sound-hard) in situations when such prior information is unavailable.
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Figure 1. Obstacle D 2 R3 lilluminated by plane waves.fig1

where D , � = �/�? and � = c/c? synthesize respectively the support and material characteristics of a trial
obstacle, v is the total field generated by the action of ui on D , and � is a distance function that is assumed
to be di�erentiable with respect to the real and imaginary parts of its first argument. In many applicatioons,
� commonly takes the least-squares format

�(v(�), u(�), �) = 1

2

�
v(�)�u(�)

� �
v(�)�u(�)

�
, (3) phi:def

that will be assumed hereon.

2.3. Green’s function

For further reference, let

G(�, x; k) =
e�ikr

4�r
, G,n(�, x, k) := n·�G(�, x, k) = � e�ikr

4�r2

(1+ikr) r,n, (4) gdef

where r = |� � x| and �G signifies the gradient of G with respect to the first argument, denote the
fundamental solution for the free space with wavenumber k, so that

�2G(�, x, k) + k2 G(�, x, k) + �(� � x) = 0, � 2 R3. (5) green

3. Generalized Topological Sensitivity
sec3

As shown in [27], the formula for topological sensitivity can be written as

T(xo, �, �) =

�

�

obs

Re

�
��

�v

�
ui(�), u(�), �

� �
(1��) �ui(xo)·A·�G(xo, �, k)

� (1���2) k2 ui(xo) G(xo, �, k)
��

d�⇠, x

o 2 B
1

, (6) td22

where ��/�v denotes the partial derivative of � with respect to its first argument, and B
1

contains the
region that is sampled for obstacles. To expose the nature of (6), one may conveniently assume the least-
squares-type cost functional (3) for which
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�v
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Figure 1. Impenetrable convex obstacle D 2 R3 illuminated by plane waves.

Sensory data. Writing the implicit time dependence as ei!t, the incident field is assumed in the
form of a plane wave, ui

= e�ik⇠·d, endowed with wavenumber k = !/c and direction d 2⌦ where
⌦ is a unit sphere. For each d, values of the total field u are collected over � obs.

Cost functional. To help solve the inverse problem, consider the misfit functional

J(D) =

Z

� obs
' (v(⇠), u(⇠), ⇠) d�⇠, (2.1)

computed for given d, where D denotes the support of a trial (Dirichlet or Neumann) obstacle; v is
the total field generated by the action of ui on D , and ' is a distance function that is differentiable
with respect to the real and imaginary parts of its first argument. In what follows, ' is assumed
to take the usual least-squares format

'(v(⇠), u(⇠), ⇠) =

1

2

�

v(⇠)�u(⇠)

� �

v(⇠)�u(⇠)

�

. (2.2)
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Green’s function. For further reference, let

G(⇠, x) =

e�ikr

4⇡r
, G,n(⇠, x) = n·rG(⇠, x) = � e�ikr

4⇡r2

(1+ikr) r,n (2.3)

denote the fundamental solution for the free space R3 with wavenumber k, where x signifies the
source location; r = |⇠ � x|, and rG indicates differentiation with respect to the first argument.

Dimensional platform. In the sequel, all quantities are assumed to be dimensionless. This is
accomplished by taking the radius of the inner sphere, the mass density of the background
medium, and the sound speed in the background medium as the reference length, mass density,
and velocity. In this setting, one in particular has R

1

= 1 and R
2

= ↵�1.

(a) Topological Sensitivity
Let D ⇢ R3 contain the origin, and consider the perturbation of J(;) due to insertion of a
vanishing impenetrable obstacle D✏ = x

o
+ ✏D at a sampling point x

o 2 B
1

. In this case, it can be
shown [7, 8] that

J(D✏) = J(;) + T (x

o
)f(✏) + o(f(✏)), ✏! 0 (2.4)

where lim✏!0

f(✏) = 0 and T (x

o
), the so-called topological sensitivity, is independent of ✏.

Taking D as the unit ball, analyses further show [7, 8, 33, 38] that

T (x

o
) = Re

h

A rui
(x

o
)·rua

(x

o
) + B ui

(x

o
)ua

(x

o
)

i

(2.5)

where the coefficients A and B depend on the physical character of a vanishing perturbation,
and ua is the so-called adjoint field, generated in R3 by the single-layer potential
@'(v, u, ⇠)/@v|v=ui = (ui � u)(⇠) on � obs. Note that the implicit assumption underpinning (2.5)
is that the wavenumber k is fixed in the limiting process, whereby k✏! 0 in (2.4), see [2, 31]. As a
prelude to the ensuing discussion, Table 1 specifies the coefficients A and B in situations when D✏

is either sound-soft or sound-hard.

(b) Scaled TS indicator
As indicated earlier, the goal of this work is to provide an overarching high-frequency treatment of
impenetrable (Dirichlet and Neumann) obstacles via the concept of topological sensitivity. Given
the dependence of B on k in the Neumann case (see Table 1), however, one may conveniently
introduce a scaled counterpart of (2.5), namely

T(x

o
) := k� T (x

o
) = Re

h

Arui
(x

o
)·rua

(x

o
) + k2Bui

(x

o
)ua

(x

o
)

i

(2.6)

where the scaling parameter � and normalized expansion coefficients A and B are given in Table 1.
Relative to (2.5), the use of (2.6) is advantageous in that i) the new expansion coefficients are k-
independent, and ii) the asymptotic order of T, in terms of powers of k, is invariant with respect to
the (Dirichlet or Neumann) character of the vanishing perturbation. In the remainder of this work,
(2.6) is used as the basis for the high-frequency reconstruction and identification of impenetrable
obstacles. Note that the featured scaling of TS by k� (besides simplifying the analysis) does not
affect the inverse solution, since the anomalies are usually identified from the relative variation
of TS [e.g. 14, 18, 19, 29, 33].

Table 1. Expansion coefficients in the TS formula (2.5) assuming ball-shaped impenetrable perturbation [7, 8, 33, 38],

and triplet of parameters (�, A, B) featured by the scaled TS expression (2.6).

Vanishing obstacle A B � A B

Dirichlet (sound-soft) 0 1 2 0 1
Neumann (sound-hard) 3/2 �k2 0 3/2 -1
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To help expose the high-frequency behavior of T, one may expand the adjoint field in (2.6) as

T(x

o
) =

Z

� obs
Re



(ui � u)(⇠)

⇢

Arui
(x

o
) · rG(x

o, ⇠) + k2Bui
(x

o
) G(x

o, ⇠)

��

d�⇠, x

o 2 B1,

(2.7)
and recall the integral representation of the scattered field

�ũ(⇠) = (ui � u)(⇠) =

Z

S

⇣

u,n(⇣) G(⇣, ⇠) � u(⇣) n(⇣)·rG(⇣, ⇠)

⌘

dS⇣ , R3\D

where n is the unit outward normal on S; u,n = n·ru, and B
1

contains the region that is sampled
for anomalies. Accordingly, (2.7) can be rewritten as

T(x

o
) = �Re



Arui
(x

o
) ·
⇢Z

S
u,n(⇣)

Z

� obs
G(⇠, ⇣) rG(⇠, xo

) d�⇠ dS⇣

+

Z

S
u(⇣) n(⇣)·

Z

� obs
rG(⇠, ⇣) ⌦ rG(⇠, xo

) d�⇠ dS⇣

�

� k2Bui
(x

o
)

⇢Z

S
u,n(⇣)

Z

� obs
G(⇠, ⇣) G(⇠, xo

) d�⇠ dS⇣

+

Z

S
u(⇣) n(⇣)·

Z

� obs
rG(⇠, ⇣) G(⇠, xo

) d�⇠ dS⇣

��

, (2.8)

due to the fact that G(x, y) = G(y, x) and rG(x, y) =�rG(y, x).

(c) Approximation of the component integrals over � obs

The purpose of this section is to reduce the TS formula (2.8) to a single, Fourier-type surface
integral that is amenable to short-wavelength approximation. Note that analogous derivations
can be found in [3, 5]. From (2.3), it follows that

r2G(⇠, xo
) + k2 G(⇠, xo

) + �(⇠ � x

o
) = 0,

r2G(⇠, ⇣) + k2 G(⇠, ⇣) + �(⇠ � ⇣) = 0,
⇠ 2 R3. (2.9)

On multiplying (2.9a) and (2.9b) respectively by G(⇠, ⇣) and G(⇠, xo
) and integrating by parts

over B
2

, one finds by way of the divergence theorem that
Z

� obs
G,n(⇠, a) G(⇠, b) d�⇠ �

Z

B2

rG(⇠, a)·rG(⇠, b) dB⇠

+ k2

Z

B2

G(⇠, a) G(⇠, b) dB⇠ = �G(a, b), (a, b) 2
�

(x

o, ⇣), (⇣, xo
)

 

(2.10)

Thanks to (2.3), the subtraction of the complex conjugate of (2.10) with (a, b) = (⇣, xo
) from its

companion yields
Z

� obs
G(⇠, ⇣) G(⇠, xo

)

⇥

1 + E(⇠, xo, ⇣)

⇤

d�⇠ = � 1

k
Im

�

G(x

o, ⇣)

�

, x

o, ⇣ 2 B
1

, (2.11)

where

E(⇠, xo, ⇣) =



1

2ik

⇣

¯\
(⇠�x

o
) � ¯\

(⇠�⇣)

⌘

+

1

2

⇣

\
(⇠�x

o
) +

\
(⇠�⇣)

⌘

�

·n(⇠) � 1,

noting that b

x = x/|x| and ¯

b

x = x/|x|2. On recalling that R
1

= 1 and R
2

= ↵�1> 1, it can be
shown via triangle inequality that |E| < ↵2/(k(1�↵2

)) + ↵2/2 + O(↵4

). When k > O(1), (2.11)
accordingly yields the Helmholtz-Kirchhoff identity

Z

� obs
G(⇠, ⇣) G(⇠, xo

) d�⇠
↵2

= � 1

k
Im

�

G(x

o, ⇣)

�

, x

o, ⇣ 2 B
1

, (2.12)

where “ ↵n

=” signifies approximation with an O(↵n
) residual.
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On differentiating (2.11) with respect to x

o and ⇣, it can be similarly shown that

Z

� obs
G(⇠, ⇣) rG(⇠, xo

) d�⇠
↵2

= �


Re
�

G(x

o, ⇣)

�

+

1

kr
Im

�

G(x

o, ⇣)

�

�

\
(x

o�⇣)

Z

� obs
rG(⇠, ⇣) G(⇠, xo

) d�⇠
↵2

=


Re
�

G(x

o, ⇣)

�

+

1

kr
Im

�

G(x

o, ⇣)

�

�

\
(x

o�⇣), x

o, ⇣ 2 B
1

(2.13)

and

Z

� obs
rG(⇠, ⇣) ⌦ rG(⇠, xo

) d�⇠
↵2

= � 1

r



Re
�

G(x

o, ⇣)

�

+

1

kr
Im

�

G(x

o, ⇣)

�

�

I

+

1

r



3 Re
�

G(x

o, ⇣)

�

+

⇣

3

kr
�kr

⌘

Im
�

G(x

o, ⇣)

�

�

\
(x

o�⇣) ⌦ \
(x

o�⇣), x

o, ⇣ 2 B
1

, (2.14)

where rG indicates differentiation with respect to the first argument, r=|xo�⇣| and I is the
second-order identity tensor.

Remark 1. Hereon, it is assumed that the sensory data in Fig. 1 are of the far-field type (R
2

! 1), which
amounts to setting ↵= 0 in (2.12)–(2.14).

3. High-frequency behavior of topological sensitivity
As examined earlier, the objective of this work is to understand the previously reported high-
frequency patterns of the TS indicator functional [e.g. 19, 29], obtained when (2.7) is applied to
the scattered field data at wavelengths (2⇡/k) that are smaller than the characteristic size of an
obstacle, Lo. In this vein, the ensuing analysis assumes a separation of scales in that ✏⌧ 2⇡/k ⌧ Lo,
where ✏! 0 is the size of a vanishing perturbation in (2.4) while 2⇡/k, however small, is fixed
in the limiting process. With such premise, consider the scattering of a plane wave, ui

= e�ikx·d,
by convex impenetrable obstacle D as in Section 2. Next, let n signify the outward normal on
S=@D; let S f

(d) = {x2S : n(x)·d < 0} be the “front” (i.e. illuminated) part of S, and denote by
Sb

(d) = {x2S : n(x)·d > 0} its “back” side.
Here it is noted that the high-frequency analysis of integrals similar to those featured in

Section 2(a) has been recently proposed in [6] toward developing an iterative scheme for the
multistatic imaging of extended penetrable targets. There, it is shown that the high-frequency
data can be used to construct a good initial guess for the illuminated part of the inclusion.

Dirichlet obstacle as a testbed. To provide specificity for the analysis, it is hereon assumed that
the hidden i.e. extended obstacle D is sound-soft. The case of a Neumann (sound-hard) obstacle is
addressed separately in Section 4(d) and Appendix E (supplementary material). As it turns out,
however, the latter developments draw heavily from the Dirichlet analysis – and in fact require
only a minimal amount of additional deliberation.

Remark 2. When D is of Dirichlet type, it is natural to let the trial vanishing obstacle D✏ (underpinning
the definition of TS) be sound-soft, i.e. to set (A, B) = (0, 1) in (2.6) and (2.8) according to Table 1. In
general, however, the character of D (as an impenetrable anomaly) constitutes prior information that
may not be available. As a result, it is of interest to proceed with the inverse scattering of sound-soft D

while allowing (A, B) to assume either pair of values given in Table 1. As will be shown in Section 4(e),
such paradigm paves the way toward a simultaneous reconstruction and characterization of extended
impenetrable obstacles in situations when their character is unknown beforehand.
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(a) Kirchhoff approximation
When the extended obstacle is sound-soft and kLo� 1, the physical optics (Kirchhoff)
approximation [12] states that

u = 0 on S = @D, u,n =

(

2ui
,n on S f

0 on Sb . (3.1)

By virtue of (3.1), (2.8) reduces to

T(x

o
) = � 2Re



Arui
(x

o
) ·

Z

Sf
ui,n(⇣)

Z

� obs
G(⇠, ⇣) rG(⇠, xo

) d�⇠ dS⇣

� k2Bui
(x

o
)

Z

Sf
ui,n(⇣)

Z

� obs
G(⇠, ⇣) G(⇠, xo

) d�⇠ dS⇣

�

. (3.2)

On recalling that ui
= e�ikx·d and substituting (2.12) and (2.13) into (3.2), one finds that

T(x

o
) = 2k2 Im



A (ie�ikx

o·d
)J1 + B (e�ikx

o·d
)J2

�

, (3.3)

where

J
1

=

Z

Sf
eik⇣·d



Re
�

G(x

o, ⇣)

�

+

1

kr
Im

�

G(x

o, ⇣)

�

�

d·n(⇣) d· \
(x

o�⇣) dS⇣ ,

J
2

=

Z

Sf
eik⇣·d Im

�

G(x

o, ⇣)

�

d·n(⇣) dS⇣ ,

(3.4)

and the O(↵2

) approximation error stemming from (2.12) and (2.13) is tacit.
In what follows, the high-frequency behavior of (3.3) is characterized explicitly, assuming both

i) illumination by a single incident wave and ii) full source aperture when d 2⌦. Specifically,
the analysis shows that in the latter case, the TS distribution is approximated by a closed-
form expression (the main contribution of this work) whose extreme values are localized in a
neighborhood of @D, as suggested by numerical investigations [19, 29]. This result is stated
in Theorem 4.6 for sound-soft obstacles, and in Theorem 4.7 for sound-hard obstacles. For
completeness, Appendix E (supplementary material) examines the ramifications of assuming
Kirchhoff approximation (3.1) on the claim of Theorem 4.6.

(b) Contribution of non-degenerate stationary points
Consider first the high-frequency behavior of (3.3) when the sampling point x

o straddles the
region of interest B

1

excluding a “thin-shell” neighborhood of S f, namely x

o2 B
1

\N✏, where

N✏(d) = {x: x = ⇣ + `n(⇣), ⇣ 2 S f
(d), �✏< `< ✏}, (3.5)

and ✏= O(k�1

) is a length scale to be specified later. In this setting, the analysis can be facilitated
by recalling (2.3) and rewriting (3.3) as

J
1

=

Z

Sf

d·n(⇣)

8⇡r

⇣

1+

i
kr

⌘

d· \
(x

o�⇣) eik(⇣·d+r) dS⇣ +

Z

Sf

d·n(⇣)

8⇡r

⇣

1� i
kr

⌘

d· \
(x

o�⇣) eik(⇣·d�r) dS⇣ ,

J
2

= i
Z

Sf

d·n(⇣)

8⇡r
eik(⇣·d+r) dS⇣ � i

Z

Sf

d·n(⇣)

8⇡r
eik(⇣·d�r) dS⇣ , r = |xo�⇣|.

(3.6)
To evaluate (3.6), one may invoke the parametrization of S f in terms of curvilinear surface
coordinates (⌘1, ⌘2) as

⇣ = ⇣(⌘1, ⌘2

) 2 S f, dS⇣ =

p

detgpq dS⌘, dS⌘ = d⌘1d⌘2, gpq =

@⇣

@⌘p · @⇣

@⌘q , p, q = 1, 2

where gpq are the covariant components of the metric tensor.
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As examined in [12], the leading-order asymptotic behavior of (3.6) for large k is governed
by the nature of the integrand in the neighborhood of three types of critical points, namely: i) the
stationary points on S f where r⌘(⇣ ·d ± r) vanishes; ii) the points on S f where the integrand fails
to be differentiable, and iii) all points on the closed curve @S f – the boundary of S f. By way of (3.5),
r>✏>0 whereby the integrands in (3.6) are differentiable everywhere. One may also note that the
latter vanish on @S f due to multiplier d·n. Following the analysis in [12], the leading contribution
of @S f to J

1

and J
2

can accordingly be shown to behave as O(k�2

) when k is large. In contrast, the
contribution of a non-degenerate stationary point ⇣

⇤2 S f to a two-dimensional Fourier integral

I =

Z

Sf
f(⇣)eik(⇣·d± r) dS⌘, ⇣ = ⇣(⌘1, ⌘2

), r = |⇣�x

o| (3.7)

can be computed via non-uniform asymptotic approximation [e.g. 40] as O
�

k�1

), namely

I⇣

⇤ k�2

=
2⇡
k

f(⇣

⇤
)

p

| det Apq|
eik(⇣

⇤·d± r⇤
)+ i(sgn Apq)⇡/4, r⇤

= |⇣⇤�x

o|, (3.8)

where

Apq =

@2

(⇣ ·d ± r)
@⌘p@⌘q

�

�

�

�

⇣=⇣

⇤
, p, q = 1, 2 (3.9)

are the components of the Hessian matrix; det Apq 6= 0 by definition for simple stationary
points, and sgnApq 2 {�2, 0, 2} is the difference between the numbers of positive and negative
eigenvalues of Apq . Accordingly the portion of (3.6) due to non-degenerate stationary points can
be computed, to the leading order, by summing the contributions of type (3.8).

(i) Stationary points

To evaluate (3.6) via the method of stationary phase [12], it is noted that

r⌘(⇣ ·d ± r) = 0 =)
⇥

d ± (

\
⇣�x

o
)

⇤

· @⇣

@⌘p = 0, ⇣ 2 S f, p = 1, 2. (3.10)

On denoting by ⇣

± 2 S f the stationary point of eik(⇣·d±r), this implies that d ± (

\
⇣

±�x

o
) must

either vanish or be perpendicular to S f. Making use of the inequality d·n < 0, one finds from (3.10)
that J

1

and J
2

feature two types of stationary points, namely

⇣

±
I = x

o ⌥ rd

⇣

±
II = x

o ⌥ r
⇥

d + 2|d·n|n(⇣

±
II )

⇤

, ⇣

±
I/II 2 S f

(d), r > 0. (3.11)

For a given sampling point, the stationary point of type I exists only if

x

o2 L ±, L ±
(d) = {x: x = ⇣ ± ⌧ d, ⇣ 2 S f

(d), ⌧ > 0}, (3.12)

and is uniquely determined by the projection of x

o along d on S f. In light of the implicit
specification of ⇣

±
II , on the other hand, integrals J

1

and J
2

may have multiple stationary points
of type II. To provide further insight into (3.11), let

I± = {x

o
: x

o
= ⇣

±
I ± rd, r > 0},

II± = {x

o
: x

o
= ⇣

±
II ± r

⇥

d + 2|d·n|n(⇣

±
II )

⇤

, r > 0},
(3.13)

denote the loci of the sampling points for which given boundary point ⇣ 2 S f is the stationary
point of (3.6). This is illustrated in Fig. 2 which shows that the I� and II+ loci emanate from S f

toward the exterior of D, while their I+ and II� counterparts extend (initially) from S f toward
the interior of D. One also may note that at the “apex” of S f, where n =�d, locus I� (resp. I+)
coincides with locus II+ (resp. II�). Such coalescence, however, does not pose special problems
since each of the component integrals in (3.6) will have a stationary point of either type I or type
II that in this case coincides with the apex of S f.
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Incident field

Boundary
point

d

I�, II+

I�

II+

I+

II�

I+, II�

x

o

�

�
I

�

+

II
S f

cos�1 |d·n|

cos�1 |d·n|

Sb

�

Figure 2. Loci of the sampling points, x

o, for which given boundary point ⇣ 2 Sf is the stationary point
of type I (solid lines) and type II (thick dashed lines). The normal on Sf is indicated by a thin dashed line.
On the right side of the diagram, also depicted is the unique critical point of type I and the nearest critical
point of type II for a sampling point x

o 2 R3\D̄ that is close to Sf.criticalpt

Stationary point of type I. Recalling (24) and (31), the asymptotic behaviors of J
1

and J
2

entail the
contribution of a unique stationary point �

±
I when x

o 2 L ±, and no entries of type I± otherwise. The
results in Appendix A.1 show that in the former case

det(Apq) = det gpq
(d·n)2

r2

> 0, sgn(Apq) = ±2, � = �

±
I , x

o 2 I±. (33) spone1

From (25), (27) and (33), one finds the respective contributions of the stationary point �

±
I to J

1

and J
2

as

J I

±

1

= � i

4k

�
1 ± i

kr±
I

�
eikx

o·d, J I

±

2

=
±1

4k
eikx

o·d,

where r±
I is the distance between x

o and �

±
I . By virtue of (22), the a�liated components of the topological

sensitivity are

TI

±
(xo, �, �) = ±3(1��)

2(2+�)

1

r±
I

, r±
I = |xo� �

±
I |, x

o 2 I± � (B
1

\N✏). (34) spone2

where r±
I is separated from zero thanks to (24).

Sstationary point of type II+. From the analysis in Appendix A and Appendix C, one finds within the
confines of (24) that J

1

and J
2

feature a unique stationary point �

+

II when x

o /2 L +, and no contributions
of type II+ otherwise. In this setting, (A.9) demonstrates that

det(Apq) = det gpq
4(d·n)2

�
1

�
2

r2

(r + r
1

)(r + r
2

) > 0, sgn(Apq) = 2, � = �

+

II , x

o 2 II+, (35) sptwo1

where the roots r
1/2

, given by (A.6), are strictly positive. By virtue of (25), (27) and (35), the contributions

of �

+

II to J
1

and J
2

can be computed as

J II

+

1

= � i

8k

�
�
1

�
2�

(r+
II + r

1

)(r+
II + r

2

)

�
1 +

i

kr+
II

��
1 � 2(d·n)2

�
eikx

o·d+2ik(d·n)

2r+
II + O(k�2),

J II

+

2

=
1

8k

�
�
1

�
2�

(r+
II + r

1

)(r+
II + r

2

)
eikx

o·d+2ik(d·n)

2r+
II + O(k�2),

d

Figure 2. Loci of the sampling points, x

o, for which given boundary point ⇣ 2 S f is the stationary point of type I (solid

lines) and type II (thick dashed lines). The normal on S f is indicated by a thin dashed line. On the right side of the diagram,

also depicted is the unique critical point of type I and the nearest critical point of type II for x

o close to S f .

Stationary point of type I. Recalling (3.12), the asymptotic behaviors of J
1

and J
2

entail the
contribution of a unique stationary point ⇣

±
I when x

o2 L ±, and no entries of type I± otherwise.
The results in Appendix A(a) (supplementary material) show that in the former case

det(Apq) = det gpq
(d·n)

2

r2

> 0, sgn (Apq) = ±2, ⇣ = ⇣

±
I , x

o2 I±. (3.14)

Accordingly, the use of (3.3), (3.6) and (3.8) yields the contribution of ⇣

±
I to T as

TI±
(x

o
)

k�1

= ± A
2r

, r = |xo� ⇣

±
I |, x

o2 I± \ (B
1

\N✏). (3.15)

where r is separated from zero thanks to (3.5).

Stationary point of type II+. From the analysis in Appendix A and Appendix C
(supplementary material), one finds that J

1

and J
2

feature a unique stationary point ⇣

+

II when
x

o2 R3\ ¯L +, and no contributions of type II+ otherwise. In particular, it is shown that

det(Apq) = det gpq
4(d·n)

2

⇢
1

⇢
2

r2

(r + r
1

)(r + r
2

) > 0, sgn (Apq) = 2, ⇣ = ⇣

+

II , x

o2 II+,

(3.16)
where ⇢

1/2

are the principal radii of curvature of S f at ⇣

+

II , while the roots r
1

>r
2

>0 solve (A 5)
(see Appendix A(a)). On the basis of (3.3), (3.6), (3.8) and (3.16), the contribution of ⇣

+

II to T reads

TII+
(x

o
)

1

=

k
p

⇢
1

⇢
2

4

p

(r+r
1

)(r+r
2

)

Im
h

e2ik(d·n)

2r
in

A
�

1�2(d·n)

2�
+ B

o

,

r = |xo� ⇣

+

II |, x

o2 II+\ (B
1

\N✏),

(3.17)

where n = n(⇣

+

II ). A comparison between (3.15) and (3.17) immediately reveals that the stationary
points of type I± do not contribute to the leading asymptotic behavior of topological sensitivity;
as a result, their O(1) contribution is hereon ignored.

Stationary point of type II�. With reference to Fig. 2 it is clear that, depending on x

o, integrals
J
1

and J
2

may feature multiple stationary points of type II� according to the second of (3.11). For
this class of critical points, it is shown in Appendix A(a) that

det(Apq) = det gpq
4(d·n)

2

⇢
1

⇢
2

r2

(r�r
1

)(r�r
2

), sgn(Apq) =

2

X

j=1

sign(r � rj), ⇣ = ⇣

�
II , x

o2 II�,

(3.18)



10

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

where the nature of the roots r
1/2

and their bounds are detailed in Appendix A(b) (see for instance
Fig. 15). From (3.18) it is seen that the non-uniform asymptotic expansion (3.8) breaks down as
r ! r

1/2

, which in physical terms corresponds to x

o straddling a caustic region [40]. Appendix A(c)
demonstrates that in this case the corank of Apq approaches either 1 or 2, depending on d relative
to the orthonormal basis (a

1

, a
2

, n) – given by the principal directions and the outward normal
to S f at ⇣

�
II . On denoting by CII ⇢ II� the neighborhood of r = r

1/2

where (3.8) fails, the “minus”
counterpart of (3.17) can be shown to read

TII�
(x

o
)

1

=

�k
p

⇢
1

⇢
2

4

p

|(r�r
1

)(r�r
2

)|
Im

h

e�2ik(d·n)

2r+ i(sgn Apq�2)⇡/4

in

A
�

1�2(d·n)

2�
+ B

o

,

r = |xo� ⇣

�
II |, x

o2 (II�\CII) \ (B
1

\N✏),

(3.19)

where n = n(⇣

�
II ). In principle when x

o2 II�\CII, the “mother” stationary point ⇣

�
II does not

interact with its neighbors in the sense that nominally det Apq(⇣
�
II ) = O(1). In contrast when

x

o2 CII, det Apq(p) = O(k��
) for some nominal �>0 – in which case the neighboring stationary

points are sufficiently close to ⇣

�
II , and the germane interaction must be accounted for via uniform

asymptotic expansion of (3.7) that is examined next.

(c) Uniform TS approximation in the caustic region
To frame the above discussion in a formal setting, recall that for a given i.e. fixed obstacle shape,
the bifurcation set [41] of the phase function

�(⌘1, ⌘2

) = ⇣ ·d � r, ⇣ = ⇣(⌘1, ⌘2

), r = |⇣ � x

o|, (3.20)

is given by

B� =

n

(d, xo
)2⌦⇥R3

: r⌘�= 0, det

⇣ @2�
@⌘p@⌘q

⌘

= 0, ⇣ 2 S f
(d)

o

, (3.21)

such that there exist at least two stationary points of � whose distance vanishes as (d, xo
) ! B�.

Lemma 3.1. For the problem under consideration,

B� =

n

(d, xo
)2⌦⇥R3

: x

o 2 II�, |xo�⇣

�
II | = r

1/2

, ⇣

�
II 2 S f

(d)

o

, (3.22)

where the loci II� and affiliated caustic distances r
1/2

are specified respectively in (3.13) and
Appendix A(a).

Proof. The claim is a direct consequence of i) definition (3.21); ii) the completeness of the set of
stationary points given by (3.11), and iii) the fact that the only loci in (3.13) which permit singular
Hessian of the phase function are those of of type II�.

Following [11], the interaction between stationary points should be considered as soon as their
diminishing distance reaches O(k�1/2

) (a more precise condition will be established later). Hence
when, given d, the sampling point approaches the bifurcation set i.e. straddles the caustic region,
the phase function is characterized by at least two interacting stationary points whose analysis
warrants a uniform asymptotic treatment. In the context of (3.19) this neighborhood of interaction,
as measured along ray II�, is denoted by CII.

Elements of the catastrophe theory

The fundamental framework for the analysis of interacting (or coalescing) stationary points is
provided by the catastrophe theory [42, 45], which is rooted in the notion of structurally-stable
bifurcations [41]. To facilitate the discussion, assume without loss of generality that the phase
function has a critical point at ⌘1

= ⌘2

= 0 so that r�|0 = 0. In this setting the theory originates
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from the Morse Lemma and Splitting Lemma [e.g. 37], which guarantee the existence of a local
diffeomorphism (⌘1, ⌘2

) ! (#1,#2

) in a neighborhood of the critical point such that

corank
⇣ @2�
@⌘p@⌘q

⌘

�

�

�

�

0
=

8

>

<

>

:

0 ) � = ±(#1

)

2 ± (#2

)

2

+ ��,

1 ) � = ±(#1

)

2

+  (#2

) + ��,

2 ) � =  (#1,#2

) + ��,

(3.23)

where �� is a constant,  is a smooth function whose value and derivatives up to order two
all vanish at the origin. The basic question regarding (3.23), whose first phase representation
signifies the non-degenerate case examined in Section 3(b), deals with the order of degeneracy
carried by function  . This issue is resolved via the concept of codimension, cod(�) = cod( ),
of the phase function that can be introduced as follows. Consider first the so-called Jacobian
ideal of �, given by �(�) = g

1

@�/@#
1

+ g
2

@�/@#
2

for arbitrary smooth functions g
1/2

, and its
formal Taylor series, |�(�). With such definitions, the codimension of � (assuming it is finite)
can be written as

cod(�) = dim(H
2

/|�(�)), (3.24)

where H
2

is the space of all power series R2 ! R with zero constant term. In situations when
|�(�) is expressible in terms of monomials, cod(�) is simply the number of missing monomials
relative to those in H

2

. As examined in [41], the geometric implication of (3.24) is that a small
perturbation of � with codimension n can produce at most n+1 critical points in a neighborhood
of ⌘1

= ⌘2

= 0.
Perhaps the most powerful result of the catastrophe theory is that of universal unfolding, which

encapsulates feasible perturbations of � (assuming structural stability) and provides for a uniform
asymptotic treatment of diffraction catastrophes in a neighborhood of the bifurcation set. For a
phase function �=

ˆ�(#1,#2

) of finite codimension, a universal unfolding can be written as

| ˆ�(#1,#2

)

�

�

(d,xo
)2B�

+

M
X

m=1

cm(d, xo
)hm(#1,#2

), M = cod(�) (3.25)

where cm are the control parameters that vanish on B�, and hm form a basis for H
2

modulo
|�(

ˆ�). In the context of (3.23) it is noted that (3.24) and (3.25) apply equally to  , since � and  

by definition share the codimension and universal unfolding.

Diffraction scaling. On denoting by  (c
1

, . . . , cM ) the canonic Fourier integral with k = 1 and
prototypical unfolding (3.25) of the phase function, the leading-order contribution of cognate
critical point to (3.7) in the neighborhood of B� when k � 1 can be computed (up to an O(1)

multiplier) by way of diffraction scaling [11] as kµ (k�1c
1

, . . . , k�M cM ), where µ is the so-called
singularity index signifying the intensity of a caustic, cm are k-independent, and �m > 0 are
the measures of fringe spacings in the control directions cm (see Appendix B – supplementary
material – for details).

Asymptotic order of the uniform approximation

With reference to (3.23)–(3.25), Table 2 provides the complete list of elementary diffraction
catastrophes with cod(�) < 4 according to Thom’s classification theorem [11, 41], including the
respective universal unfoldings (where (#1,#2

) are replaced by (s, t)) and diffraction scaling
parameters. Note that the diffraction catastrophes with cod(�) > 3 have not been fully analyzed
due to their complexity [11]. To aid the high-frequency evaluation of topological sensitivity,
Appendix B (supplementary material) outlines the uniform asymptotic expansion of two-
dimensional Fourier integral (3.7) for each featured type of diffraction catastrophe. The main
result of this summary, listed in the last column of Table 2, is the (fractional) asymptotic order
of the uniform expansion when applied to the TS formula (3.3). As a point of reference, one may
recall that the non-uniform approximations of type II are O(k), while those of type I are O(1).
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Table 2. Elementary diffraction catastrophes with codimension less than four and the asymptotic order of their

contribution, Tc, to the topological sensitivity. Following Appendix B, the error of each approximation is at most O(k1/2).

Catastrophe corank cod universal unfolding µ �min
m Tc

(x

o, ·, ·)
Fold 1 1 ±s2

+ t3/3 + c t 1/6 2/3 O(k7/6

)

Cusp 1 2 ±s2

+ t4 + c
2

t2 + c
1

t 1/4 1/2 O(k5/4

)

Swallowtail 1 3 ±s2

+ t5 + c
3

t3 + c
2

t2 + c
1

t 3/10 2/5 O(k13/10

)

Hyp. umbilic 2 3 s3

+ t3 + c
3

st + c
2

t + c
1

s 1/3 1/3 O(k4/3

)

Ell. umbilic 2 3 s3� st2+ c
3

(s2

+ t2) + c
2

t + c
1

s 1/3 1/3 O(k4/3

)

Global shape of a scatterer. Assuming structural stability, the type of catastrophe affiliated with
given stationary point ⇣

�
II 2S f as |xo� ⇣

�
II |! r

1/2

i.e. (d, xo
) ! B� depends on the local behavior

of the phase function, and thus on the geometry of S f, in a neighborhood of ⇣

�
II . In Appendix A

and Appendix B, the degeneracy of the Hessian matrix is examined in terms of the second-order
properties of S f (synthesized via the second fundamental form) at ⇣ = ⇣

�
II . In general, this type

of analysis can be enriched by considering the third- and higher-order surface properties of S=

@D [11]. The principal result of this paper in terms of Theorem 4.6 and Theorem 4.7, however,
applies regardless of this caveat – as long as the diffraction catastrophes affiliated with S do not
exceed three in terms of their codimension.

(d) TS approximation in the neighborhood of S f

To complete the analysis, consider the case x

o2N✏ where N✏ is a thin-shell neighborhood of S f

given by (3.5). It is apparent from Fig. 2 that as x

o! S f from the outside (resp. inside) there exist at
least two stationary points, ⇣+

II and ⇣

�
I (resp. ⇣�

II and ⇣

+

I ), that merge at the normal projection of x

o

onto S f, denoted by x

?. Further when x

o2 S f, the phase function in (3.6) assumes locally-conical
shape and becomes non-differentiable at r=0 i.e. ⇣=x

o
=x

?, which is also the point where the
non-exponential factors of integrands in J

1

and J
2

become singular. Under such circumstances,
the asymptotic approximations developed in Sections 3(b)–(c) break down i.e. cease to represent
the contribution of stationary points located in the vicinity of x

?. The purpose of this section is
accordingly two-fold, namely to i) identify the length scale ✏ in (3.5) which preserves the validity
of previously developed approximations, and ii) expose the asymptotic contribution of x

?2 S f to
the topological sensitivity (3.3) when x

o2 N✏.
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(d) Uniform TS approximation in the neighborhood of S f

To complete the analysis consider the case x

o2N✏, where the tnin-shell neigborhood N✏�S f is
given by (3.6). It is apparent from Fig. 2 that as x

o! S f from the outside (resp. inside) there
exist at least two stationary points, ⇣

+

II and ⇣

�
I (resp. ⇣

�
II and ⇣

+

I ), that merge at the normal
projection of x

o onto S f, denoted by x

?. Further when x

o2 S f, the phase function in (3.7) assumes
locally-conical shape and becomes non-differentiable at r=0 i.e. ⇣=x

o
=x

?, which is also the
point where the non-exponential factors of integrands in J

1

and J
2

become singular. Under such
circumstances, the asymptotic approximations developed in Sections (b) and (c) break down
i.e. cease to represent the contribution of stationary points located in the vicinity of x

?. The
purpose of this section is accordingly two-fold, namely to i) identify the length scale ✏ in (3.6)
which preserves the validity of previously developed approximations, and ii) uniformly expose
the asymptotic contribution of x

?2 S f to the topological sensitivity (3.4) when x

o2 N✏.

x

⇤

�

x

�
N✏

Sf

�
�

⇢sec � �

� t̂

�
d

II�

II+

�

r
�

�

⇤

n(x⇤)

x

⇤

x

o

x

Bk
x⇤

�
x

⇤

d

II�

II+

�

r
�

�

⇤

n(x⇤)

x

⇤

x

o

x

Bk
x⇤

�
x

⇤

a) b)

Sf

�x⇤

Figure 3. Sampling point x

o in a vicinity of the illuminated part, S f , of the scatterer’s boundary: a) geometrical

configuration, and b) parameters in a generic normal section at x

? used for computing the uniform asymptotic

approximation (⇢sec is the sectional radius of curvature of S f).

(i) Extent of N✏

With reference to Fig. 3 a), consider without loss of generality the situation when x

o
= x

? �
`n(x

?
) for some x

?2 S f and small `>0, and let ⇣

?
=⇣

�
II denote the germane stationary point

of type II. Next, recall the two-term extension [50] of the non-uniform approximation (3.9) which
can be written as

2⇡
k

ei(sgn Apq)⇡/4

p

| det Apq|
eik'(⇣

?
)

�

f
0

+ k�1 f
1

�

+ O(k�3

), (3.27)

in terms of generic phase funtion '(⇣), where Apq = @2'/(@⌘p@⌘q
);

f
0

= f(⇣

?
), f

1

= 2i↵�3

�

2f
0

(p
0

+ ↵p
1

) � 2↵p
2

+ ↵2p
3

�

, ↵ = det Apq, (3.28)

and

p
0

= 15('3

20

'2

03

+ '3

02

'2

30

),

p
1

=

3

4

'
02

(2'
12

'
30

+ '2

21

) +

3

4

'
20

(2'
21

'
03

+ '2

12

) � 3('
04

'2

20

+ '
40

'2

02

) � '
20

'
02

'
22

,

p
2

= f
10

('
20

'
02

'
12

+ 3'
30

'2

02

) + f
01

('
02

'
20

'
21

+ 3'
03

'2

20

), p
3

= f
02

'
20

+ f
20

'
02

.
(3.29)

Here gij = (i!j!)�1@i+jg(⇣)/(@xi@yj
)|

⇣=⇣

?
(g = ', f), and (x, y) are obtained by a local

diffeomorfism from (⌘1, ⌘2

) so that @ 2'/@x@y = 0 at ⇣ = ⇣

?.
In the context of (3.27), the idea for exposing the characteristic length ✏ in (3.6) is to find the

threshold value of ` above which |k�1f
1

/f
0

| = o(1). For brevity of exposition, the attention is

x

?
x

?

n(x?)
Bk

x

?

(a) (b)
�

x

?

|�|

Figure 3. Sampling point x

o in a vicinity of the illuminated part, S f , of the obstacle’s boundary: (a) geometrical

configuration, and (b) parameters in a generic normal section at x

? used for computing the near-boundary approximation

(⇢sec is the sectional radius of curvature of S f).
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(i) Extent of N✏

With reference to Fig. 3(a), consider without loss of generality the situation where

x

o
= x

? � |`|n(x

?
), ` = (x

o � x

?
)·n(x

?
),

for some x

?2 S f and small |`|, and let ⇣

⇤
=⇣

�
II denote the germane stationary point of type II.

Next, recall the two-term extension [40] of the non-uniform approximation (3.8) which reads

2⇡
k

ei(sgn Apq)⇡/4

p

| det Apq|
eik'(⇣

⇤
)

�

f
0

+ k�1 f
1

�

, (3.26)

in terms of generic phase function '(⇣), where Apq = @2'/(@⌘p@⌘q
);

f
0

= f(⇣

⇤
), f

1

= 2i↵�3

�

2f
0

(p
0

+ ↵p
1

) � 2↵p
2

+ ↵2p
3

�

, ↵ = det Apq, (3.27)

and

p
0

= 15('3

20

'2

03

+ '3

02

'2

30

),

p
1

=

3

4

'
02

(2'
12

'
30

+ '2

21

) +

3

4

'
20

(2'
21

'
03

+ '2

12

) � 3('
04

'2

20

+ '
40

'2

02

) � '
20

'
02

'
22

,

p
2

= f
10

('
20

'
02

'
12

+ 3'
30

'2

02

) + f
01

('
02

'
20

'
21

+ 3'
03

'2

20

), p
3

= f
02

'
20

+ f
20

'
02

.

Here gij = (i!j!)�1@i+jg(⇣)/(@xi@yj
)|

⇣=⇣

⇤ for g =', f , and (x, y) are obtained by a local
diffeomorphism from (⌘1, ⌘2

) so that @ 2'/@x@y = 0 at ⇣ = ⇣

⇤.
In the context of (3.26), the idea behind exposing the characteristic length ✏ in (3.5) is to find a

threshold value of |`| beyond which |k�1f
1

/f
0

| = o(1). For brevity of exposition, the attention is
hereon focused on applying (3.26) to the component of J

1

in (3.6) with phase function ⇣ ·d � r,
noting that the analysis of the remaining integrals in (3.6) yields the same result when x

o
= x

?
+

`n(x

?
). To commence the analysis, let |`| = |xo�x

?| = O(k�1

), and let x

? be located away from
@S f so that ⇣

⇤ in Fig. 3(a) is contained within a ball Bk
x

? of radius O(k�1

) centered at x

?. In
the high-frequency regime, one has ⇢

1

> ⇢
2

� k�1, where ⇢
1

and ⇢
2

are the principal radii of
curvature of S f at x

?. As a result, S f can be locally approximated (within Bk
x

? ) by its tangent
plane, ⇧

x

? , drawn at x

?. As shown in Section 3(d)ii, this treatment induces O(k�2

) error in the
integration procedure.

To aid the application of (3.26), let the normal projection of ⇣ 2 S f on ⇧
x

? be specified in terms
of Cartesian coordinates (x, y) such that: i) x

? is identified with the origin (0, 0), and ii) x is
parallel to the tangential component of d, namely dt = d + |d·n|n(x

?
). In this setting, the phase

function can be approximated locally as

⇣ ·d � r ' '(⇣), ' = x

?·d + |dt|x � (`2+x2

+y2

)

1/2, ⇣ 2 S f \ Bk
x

? (3.28)

for sufficiently large k. On computing the projection of the stationary point ⇣

⇤ onto ⇧
x

?

as (x⇤, y⇤
) = (�`|dt|/dn, 0) where dn = |d·n(x

?
)|, the reduced phase function (3.28) can be

expanded about (x⇤, y⇤
) in Taylor series up to the fourth order to evaluate the necessary

derivatives in (3.27). After treating in a similar way the multiplier of exp[ik(⇣ ·d � r)] in the first
of (3.6), one finds that

f
1

k f
0

=

1

8

�

�

�

dn

k`

�

�

�

(|k`| � idn)

�1

h

dn (15d6

n � 62d4

n + 87d2

n � 24) + i|k`|(15d6

n � 46d4

n + 47d2

n � 8)

i

,

from which it follows that |k�1f
1

/f
0

| . (2⇡)

�1 for |`| > 2⇡/k. As a result, the second-order term
in (3.26) can be neglected, i.e. (3.8) holds, for normal distances to S f of at least one wavelength.
One should bear in mind that, as the shadow region is approached when x

?! @S f i.e. dn ! 0,
the foregoing analysis ceases to apply for the distance between ⇣

⇤ and x

? exceeds O(k�1

), see
Fig. 3(a). In this case, however, the situation is mitigated by the fact that the kernels in (3.6) are all
proportional to dn, which makes precise knowledge of the portal distance in this border region
less relevant. Accordingly, the above threshold on |`| is applied uniformly 8x

?2 S f by stipulating
✏= O(k�1

) > 2⇡/k in (3.5).
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(ii) Asymptotic expansion for x

o 2 N✏

In situations where the sampling point x

o straddles the “near-boundary” region (3.5) with
✏= O(k�1

) > 2⇡/k, the method of stationary phase ceases to apply for critical points close to
the normal projection, x

?, of x

o on S f. Further as x

o! x

?, the normal projection itself becomes a
critical point owing to the loss of differentiability of the integrands in (3.6) there. This section
is devoted to computing asymptotically the contribution of x

?2 S f (and its neighborhood) to
T(x

o, ·, ·) when x

o2N✏.
It is well known that the topological sensitivity can be expressed as a bilinear form entailing

two forward solutions for the reference domain, namely the incident field and the so-called
adjoint field [e.g. 33]. In the context of Fig. 1, this guarantees that T(x

o, ·, ·) is in fact analytic
for x

o2 B
1

. Indeed, the apparent singularities observed in (3.6) as r ! 0 (i.e. x

o! S f) are the
artifact of rearranging (3.4) to cater for the method of stationary phase, and can be dispensed
with. Focusing on the component integral J

1

in (3.3), one finds from (2.3) and (3.4) that

J
1

= k eikx

o·d
Z

Sf

d·n(⇣)

4⇡kr

h

cos(kr) � sin(kr)
kr

i

d· \
(x

o�⇣) e�ik(x

o�⇣)·d dS
⇣

, (3.29)

which is regular at r=0. To analyze (3.29) when x

o2N✏, one may note that the local behavior
of the integrand is dominated by the term (kr)�1

[cos(kr) � sin(kr)/kr ], that vanishes at kr=0

and reaches maximum (absolute) value at kr ' 0.66 i.e. r = O(k�1

). Thus, for sufficiently high k

the contribution of x

? to J
1

can be evaluated by approximating S f via its tangent plane (⇧
x

? ) as
shown in Fig. 3(a).

To expose the error in computing the contribution of x

? to J
1

via tangent-plane approximation,
consider a generic normal section of S f at x

?, and let ˆ

t denote the germane tangent vector as in
Fig. 3(b) so that

r =

q

(`+ ")2 + %2, `= O(k�1

), %= (x

o� ⇣)·ˆt,

x

o� ⇣ = (`+ ")n(x

?
) + %ˆ

t, n(⇣) = n(x

?
) +

2"

%2 + "2
�

%ˆt � "n(x

?
)

�

.
(3.30)

Note that for r = O(k�1

), one has %= O(k�1

) and "= O(k�2

) under the premise of locally-
constant radius of curvature. Accordingly, it follows from (3.29) and (3.30) that

J
1

= J?
1

+ O(k�2

), J?
1

= J
1

|"=0

= O(k�1

),

in terms of the asymptotic contribution of x

? to J
1

, where J?
1

denotes the tangent-plane
approximation obtained by setting "=0 in (3.30). On adopting the polar coordinate system (%, ✓)

centered at x

? so that direction dt = d � |d·n|n corresponds to ✓= 0, one finds that

J?
1

=

|d·n|
4⇡

eikx

?·d
Z1

0

k%

(kr0)
2

h

cos(kr0) � sin(kr0)

kr0

i

Z
2⇡

0

⇣

|d·n|k`+ dt cos(✓)k%
⌘

eidtk% cos(✓)d✓ d%,

(3.31)
where n = n(x

?
), r0=

p

`2+ %2, dt=
p

1�|d·n|2, and the outer integral is extended to infinity via
an implicit neutralizer function [e.g. 40]. The inner integral over ✓ can be computed in terms of
Bessel functions of the first kind, reducing the outer integral to a pair of Hankel transforms

J?
1

= � |d·n|
2k

eikx

?·d
n

|d·n| sin(k`) + dt

h

iH
0

(f
0

; dt) � |d·n| k`H
1

(f
1

; dt)

io

, (3.32)

where

H⌫(f(%); ⌧) =

Z1

0

f(%) J⌫(⌧%)
p
⌧% d%, f

0

=

sin(kr0)

kr0

p

kdt%, f
1

=

f
0

kdt%
. (3.33)

By way of the integral identities in [28], the leading-order contribution of x

? to J
1

when x

o2N✏

can accordingly be computed as

J?
1

= � 1

2k
eikx

?·d
n

id2

t cos(|d·n|k`) + |d·n|2 sin(|d·n|k`)
o

. (3.34)
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Recalling (3.4), the remaining integral in (3.3) can be evaluated in a similar fashion, yielding

J?
2

=

1

2k
eikx

?·d
cos(|d·n|k`) (3.35)

as the leading-order contribution of x

? to J
2

. On the basis of (3.3), (3.34) and (3.35), one finds

T?
(x

o
)

1

=

k
2

sin(2k`|d·n|)
n

A (1�2|d·n|2) + B
o

, x

o2N✏ (3.36)

to be the leading asymptotic contribution of x

? to the topological sensitivity. It is perhaps not
surprising that (3.36) shares the common multiplier with stationary phase approximations (3.17)
and (3.19), dependent on |d·n| as well as the coefficients A and B – specified by the type of
(impenetrable) vanishing perturbation according to Table 1.

4. Imaging ability of the TS indicator function
From (2.7), it is seen that for x

o2 B
1

the topological sensitivity stems from a bi-linear form
entailing two regular wave fields in the reference domain, namely the incident wave and the
fundamental solution whose source is outside B

1

. As a result, the spatial distribution of TS is
necessarily regular and generally characterized by wave-like fluctuations whose characteristic
wavelength is ⇡/k, i.e. half that of the illuminating wave. In this setting, the key question is that of
the conditions under which the most pronounced negative values of TS are localized in a narrow
region “about the boundary” [19] of an obstacle.

(a) Single plane-wave incidence
To provide an explicit platform for the analysis, the foregoing asymptotic developments
(assuming the hidden anomaly to be of Dirichlet type) can be synthesized by writing

T(x

o
)

k⌫

= 1N✏(d)

(x

o
) T?

(x

o
) + 1

˜B�
(d, xo

) Tc
(x

o
)

+ 1G (d)

(x

o
) TII+

(x

o
) +

X

TII�
(x

o
), x

o2 B
1

, d 2⌦

(4.1)

where ⌫ 6 1/2; 1M (m) is the characteristic function equalling 1 for m2M and 0 otherwise;
recalling Fig. 4, N✏ is a thin-shell neighborhood of S f given by (3.5); ˜B��B� is a neighborhood
of the bifurcation set (3.21) where the non-uniform approximation fails; and, as shown
in Appendix C (supplementary material), G (d) = R3\ ¯L +

(d) where L + is a semi-infinite
cylindrical domain given by (3.12). From (3.17), (3.19), (3.36) and Table 2, one finds that

T?
= O(k), Tc

= O(k↵
), 7

6

6 ↵6 4

3

, TII±
= O(k). (4.2)

Note that for given d, the contributions of type T?, Tc and TII+ are unique due respectively to:
i) the uniqueness of the normal projection of x

o2 N✏ on S f, ii) premise that the hidden obstacle is
convex with smooth boundary, and iii) geometrical grounds elaborated in Appendix C. In contrast
T(x

o
) may include the contribution of multiple isolated stationary points of type II�, as indicated

by the summation symbol before TII� . In the context of (4.1) one should also mention that for
x

o2 N✏, the contribution of critical points within distance O(k�1

) from x

? – accounted for via T?

– is implicitly excluded when computing Tc and TII± .
From (4.2) it is readily seen that the near-boundary contribution is O(k) i.e. commensurate

with the non-uniform approximation, yet subpar in order relative to the asymptotic contribution
of diffraction catastrophes summarized in Table 2. Accordingly the high-frequency distribution
of topological sensitivity is, under the premise of single plane-wave incidence, asymptotically
dominated by the caustics.
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5.5. Imaging ability of the TS indicator function
TSdistD

From (5), it is seen that for x

o 2 B
1

the topological sensitivity stems from a bi-linear form entailing two regular
wavefields in the reference domain, namely the incident wave and the fundamental solution whose source is
strictly outside B

1

. As a result, the spatial distribution of TS is necessarily regular and generally characterized
by wave-like fluctuations whose characteristic wavelength is �/k, i.e. half that of the illuminating wave. In
this setting, the key question is that of the conditions under which the most pronounced negative values of
TS are localized in a narrow region “about the boundary” [13] of an obstacle.

To provide an explicit platform for the analysis, the foregoing asymptotic developments can be
synthesized by writing

T(xo, �, �) = 1N✏(d)

(xo) T⇤(xo, �, �) +
�
1 � 1N✏(d)

(xo)
�

�
�
1

˜B�
(xo, d) Tc(xo, �, �) + 1S(d)

(xo) TII

+

(xo, �, �)
�

+
�

TII

�
(xo, �, �), + o(k), x

o 2 B
1

(61) td-total

where 1M (m) is the characteristic set function equalling 1 for m 2 M and 0 otherwise; N✏ is a thin-shell
neighborhood of Sf given by (24); B̃� �B� is a neighborhood of the bifurcation set where the non-uniform
approximation fails;

S(d) = {x 2 R3: x �= � � �n(�), � 2 Sf(d), � > 0}

5.5.1. Single plane-wave incidence. From (60) it is readily seen that the near-boundary contribution is
T⇤ = O(k), i.e. of the same order as the non-uniform approximations (36) and (38), yet sub-par relative
to the asymptotic contribution of the di�raction catastrophes listed in Table 1. Accordingly the high-
frequency distribution of topological sensitivity is, under the assumption of a single plane-wave incidence,
asymptotically dominated by the

Proposition 5.1 Reconstruction of a Dirichlet obstacle.recodiri

6. High-frequency reconstruction of a Neumann obstacle
exex

For a sound-hard obtacle, the physical optics approximation states

u =

�
2ui on Sf

0 on Sb , u,n = 0 on D, (62) sho1

so that

T(xo, �, �) = � 2Re

�
(1��) �ui(xo)·A·

�

Sf

ui(�) n(�)·
�

�

obs

�G(�, �, k) � �G(�, xo, k) d�⇠ dS⇣

+ (1���2) k2 ui(xo)

�

Sf

ui(�) n(�)·
�

�

obs

�G(�, �, k) G(�, xo, k) d�⇠ dS⇣

�
. (63) bir4n

By way of (12) and (15), one accordingly finds that

T(xo, �, �) = 2k Re

�
3(1��)

2 + �
(ie�ikx

o·d)J
3

� (1 � ��2)(e�ikx

o·d) J
4

�
, (64) bir3n

were

J
3

=

�

Sf

eik⇣·d
�

1

r

�
Re

�
G(xo, �, k)

�
+

1

kr
Im

�
G(xo, �, k)

��
(d·n(�) + 3�) � k� Im

�
G(xo, �, k)

��
dS

⇣

,

J
4

=

�

Sf

eik⇣·d
�
Re

�
G(xo, �, k)

�
+

1

kr
Im

�
G(xo, �, k)

��
k n(�)· \(xo��) dS

⇣

,

(65) bir5n

and � = \(xo��)� \(xo��) : d � n(�).
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5.5. Imaging ability of the TS indicator function
TSdistD

From (5), it is seen that for x

o 2 B
1

the topological sensitivity stems from a bi-linear form entailing two regular
wavefields in the reference domain, namely the incident wave and the fundamental solution whose source is
strictly outside B

1

. As a result, the spatial distribution of TS is necessarily regular and generally characterized
by wave-like fluctuations whose characteristic wavelength is �/k, i.e. half that of the illuminating wave. In
this setting, the key question is that of the conditions under which the most pronounced negative values of
TS are localized in a narrow region “about the boundary” [13] of an obstacle.

To provide an explicit platform for the analysis, the foregoing asymptotic developments can be
synthesized by writing

T(xo, �, �) = 1N✏(d)

(xo) T⇤(xo, �, �) +
�
1 � 1N✏(d)

(xo)
�

�
�
1

˜B�
(xo, d) Tc(xo, �, �) + 1S(d)

(xo) TII

+

(xo, �, �)
�

+
�

TII

�
(xo, �, �), + o(k), x

o 2 B
1

(61) td-total

where 1M (m) is the characteristic set function equalling 1 for m 2 M and 0 otherwise; N✏ is a thin-shell
neighborhood of Sf given by (24); B̃� �B� is a neighborhood of the bifurcation set where the non-uniform
approximation fails;

S(d) = {x 2 R3: x �= � � �n(�), � 2 Sf(d), � > 0}

5.5.1. Single plane-wave incidence. From (60) it is readily seen that the near-boundary contribution is
T⇤ = O(k), i.e. of the same order as the non-uniform approximations (36) and (38), yet sub-par relative
to the asymptotic contribution of the di�raction catastrophes listed in Table 1. Accordingly the high-
frequency distribution of topological sensitivity is, under the assumption of a single plane-wave incidence,
asymptotically dominated by the

Proposition 5.1 Reconstruction of a Dirichlet obstacle.recodiri

6. High-frequency reconstruction of a Neumann obstacle
exex

For a sound-hard obtacle, the physical optics approximation states

u =

�
2ui on Sf

0 on Sb , u,n = 0 on D, (62) sho1

so that

T(xo, �, �) = � 2Re

�
(1��) �ui(xo)·A·

�

Sf

ui(�) n(�)·
�

�

obs

�G(�, �, k) � �G(�, xo, k) d�⇠ dS⇣

+ (1���2) k2 ui(xo)

�

Sf

ui(�) n(�)·
�

�

obs

�G(�, �, k) G(�, xo, k) d�⇠ dS⇣

�
. (63) bir4n

By way of (12) and (15), one accordingly finds that

T(xo, �, �) = 2k Re

�
3(1��)

2 + �
(ie�ikx

o·d)J
3

� (1 � ��2)(e�ikx

o·d) J
4

�
, (64) bir3n

were

J
3

=

�

Sf

eik⇣·d
�

1

r

�
Re

�
G(xo, �, k)

�
+

1

kr
Im

�
G(xo, �, k)

��
(d·n(�) + 3�) � k� Im

�
G(xo, �, k)

��
dS

⇣

,

J
4

=

�

Sf

eik⇣·d
�
Re

�
G(xo, �, k)

�
+

1

kr
Im

�
G(xo, �, k)

��
k n(�)· \(xo��) dS

⇣

,

(65) bir5n

and � = \(xo��)� \(xo��) : d � n(�).

B̃�(·, d)

N✏(d)

G (d) R3

Figure 4. Schematics of the sets N✏, B̃� and G featured in (4.1).

(b) Full source aperture
To expose the imaging ability of the TS indicator function, consider the full source aperture
companion of (2.7), namely

˘T(x

o
) =

Z

⌦
T(x

o
) d⌦

d

, (4.3)

where the integration is performed over the direction d of incident plane wave, ⌦ is the unit
sphere, and the dependence of T on d is implicit.

Proposition 4.1. For given x

o 2 B
1

, every boundary point ⇣ 2 S becomes stationary point of type II for
some unique incident direction d = d

⇤
(x

o, ⇣) provided that (

\
⇣ � x

o
)·n(⇣) 6= 0.

Proof. From (3.11) one finds that for stationary points of type II, d

⇤ must satisfy

ˆ

r

±
= ⌥[d

⇤
+ 2|d⇤·n|n(⇣

±
II )] , ˆ

r

±
=

\
⇣

±
II � x

o, (4.4)

subject to the condition d

⇤·n(⇣

±
II ) < 0 to ensure ⇣

±
II 2 S f

(d

⇤
). A contraction of (4.4) with n(⇣

±
II )

yields d

⇤·n(⇣

±
II ) = ± ˆ

r

±· n(⇣

±
II ), whereby

d

⇤
(x

o, ⇣) = � [I � 2n⌦n(⇣)]

ˆ

r , ˆ

r =

\
⇣ � x

o , � = sign(n·ˆr), � 6= 0. (4.5)

Here ⇣ 2 S is a stationary point of type II for pair (x

o, d⇤
), and [I � 2n⌦n ] is an (orthogonal)

reflection matrix. The uniqueness of d

⇤ is then verified by contradiction noting that n(⇣) is single-
valued.

Remark 3. The uniqueness of d

⇤ceases at boundary points ⇣o2 S where ˆ

r ·n(⇣o) = 0. In particular, (4.4)
demonstrates each ⇣o is a stationary point of type II±when d

⇤
= ⌥ ˆ

r. Their leading-order contribution to ˘T,
however, can be neglected since the slowly-varying components of the Fourier integrals in (3.4) vanish there
due to the fact that d

⇤·n(⇣o)= ˆ

r ·n(⇣o) = 0.

Remark 4. For x

o 2 D, one has ˆ

r ·n > 0 8⇣ 2 S. As a result, the stationarity type of every boundary
point ⇣ when d = d

⇤
(x

o, ⇣) is II�. When x

o 2 B
1

\D, on the other hand, the boundary S of a Dirichlet
obstacle can be split into subsets S±

II (x

o
) = {⇣ 2 S : d = d

⇤
(x

o, ⇣) ! ⇣ = ⇣

±
II

}, separated by a closed
curve that is the locus of points ⇣o where d

⇤·n(⇣o)= 0 (see Fig. 5(a)). When x

o 2 D, these two subsets
degenerate to S+

II = ; and S�
II = S.

Remark 5. For given x

o2 B
1

, the bifurcation set B�(d, xo
) on the unit sphere spanned by d is a union

of smooth curves and points where such curves join, intersect, or terminate as indicated in Fig. 5(b). Since
dim(⌦) = 2, the only diffraction catastrophe affiliated with the curves in B� is of type fold (cod(�) = 1),
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�

�
II

x

o

n(�o)

cusp

fold

�

N̆✏

⇣+
II

S+
II

S�
II

hyperbolic
umbilic(a) (b)

Figure 5. Schematics of the sets S±
II ⇢ S and B�⇢ ⌦ for given x

o 2 B1: (a) Loci of the stationary points of type II±

when d spans ⌦, and (b) bifurcation set B�(d, xo) on the unit sphere, solid lines, surrounded by a narrow region B̃�

(shaded area) where the non-uniform approximation fails.

while the higher-order catastrophes (cod(�) > 1) appear as points [11] on ⌦. In general, B� is contained
within an open neighborhood ˜B� where the non-uniform approximation fails, see also Fig. 4 for the
schematics of ˜B� in the physical space. On denoting by

c =

�

cm(d, xo
), m = 1, ..., cod(�)

 

the minimal control space describing given diffraction catastrophe (see Section 3(c)), B� and ˜B� can be
formally specified as the level set |c| = 0 and neighborhood |c| < k�� , where �> 0 is a catastrophe-
specific scaling parameter to be specified later. For completeness, it is noted that B� is closed for the
assumption to the contrary would require cod(�) = 0 [23]. In the context of (4.5) relating (for given x

o)
d = d

⇤ to the stationary point(s) ⇣ 2 S, the subset of S corresponding to ˜B� is hereon denoted by ˜S�.

In light of the above remarks, one may observe that a discrete set of critical points contributing
to T(x

o
) in the case of a single incident wave, see (4.1), transitions in the course of full-aperture

illumination into a continuous set S of all boundary points contributing to ˘T(x

o
). This suggests

the possibility of a change of variable which remarkably facilitates the analysis. To introduce the
idea, suppose that x

o 2 B
1

\{N✏ [ D} and consider the integral of TII+ with respect to d as it
contributes to (4.3). Next, recall that (4.5) provides the map relating d = d

⇤ to the solid angle of a
boundary point with respect to x

o, namely ˆ

r. This map is one-to-one on account of the uniqueness
of ⇣

+

II , see Appendix C. It is then straightforward to transform ˆ

r to ⇣ 2 S+

II (see Fig. 5) using the
solid angle property d⌦

ˆr

= � (

ˆ

r ·n/r2

)dS
⇣

, whereby
Z

⌦
1G (d)

(x

o
) TII+

(x

o
) d⌦

d

= �
Z

S
+
II

TII+
(x

o
)

ˆ

r ·n
r2

dS
⇣

, r = |xo�⇣|. (4.6)

When x

o 2 N✏\D, on the other hand, ⇣

+

II 2 Bk
x

? and its contribution is computed via T?, see
Section 3(d). Hence Bk

x

? \ S must be excluded from S+

II in computing (4.6) via the concept of
Van der Corput neutralizers [12, 16] (see also Appendix B, supplementary material). This tool is
implicitly used in all cases where the partitioning of a domain of integration is in order.

The same change of variable can be applied to the integral over
P

TII� in (4.1) with respect
to d. In this case, however, (4.5) is not one-to-one – which signifies the multiplicity of ⇣

�
II and thus

inherently accounts for the summation over TII�.

Lemma 4.2. By way of (4.1), (4.3) and relationship |ˆr ·n| = |d⇤·n|, the full-aperture distribution ˘T can
be recast as

˘T(x

o
)

k⌫

= 1

˘N✏
(x

o
)

Z

⌦
T? d⌦

d

+

Z

˜B�

Tc d⌦
d

+

Z

S±

|d⇤·n|
r2

TII± dS
⇣

, (4.7)
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where ⌫ 6 1/2; d

⇤ solves (4.5); ˘N✏ = [
d2⌦ N✏(d) is the “full-aperture” neighborhood of S constructed

from (3.5); T?
= 0 for d·n(x

?
) > 0;

S±
= S±

II \
�

1

˘N✏
(x

o
) Bk

x

? [ ˜S�
 

, (4.8)

and Bk
x

? is a ball of radius O(k�1

) centered at the normal projection x

? of x

o on S, see Fig. 3(a).
Geometrically, the respective support of T?, Tc and T± in (4.7) can be described as unit hemisphere, a
small neighborhood of the bifurcation set B� on the unit sphere, and the boundary of the scatterer excluding
its subsets contributing to T? and Tc.

(i) Contribution of non-degenerate stationary points

Proposition 4.3. The contribution of isolated stationary points to ˘T in (4.7) scales as
Z

S±

|d⇤·n|
r2

TII± dS
⇣

= O(k↵
), 0 6 ↵6 1

3

(4.9)

for sufficiently large k, assuming the codimension of phase singularities in the featured integral not to
exceed three.

Proof. By way of (3.17) and (3.19), the left-hand side of (4.9) can be rewritten as a Fourier integral

k Im
 Z

S±
F

±
(⇣)e±2ikr|d⇤·n|2 dS

⇣

�

, |d⇤·n| = | \
(⇣ � x

o
)·n(⇣)|, (4.10)

where S± is such that r > 2⇡k�1 thanks to (4.8), and

k

Z

S±

�

�F
±
(⇣)

�

�dS
⇣

= O(k).

In this setting, the leading asymptotic behavior of (4.10) is governed by critical points of the phase
function r|d⇤·n|2 which satisfy

2|d⇤·n|


�n � |d⇤·n|
2

\
(⇣ � x

o
) +

d

⇤·a
1

⇢
1

ra
1

+

d

⇤·a
2

⇢
2

ra
2

�

· @⇣

@⌘p = 0, (4.11)

where �= sign(n·ˆr) and ⇢
1/2

are the principal radii of curvature of S± at ⇣. From the definition
of S± in (4.8), the relevant roots of (4.11) represent the normal projection of x

o on S, i.e.
�

�

\
(⇣ � x

o
)·n(⇣)

�

�

= 1. (4.12)

Over S+, the solution of (4.12) is unique due to the convexity and smoothness of S, whereby the
phase function in this case possesses a single isolated stationary point. From (3.8), one accordingly
finds that the integral over S+ in (4.9) scales as O(1).

On the other hand, the normal projection of x

o on S� is generally not unique. In this case, it
can be shown via (4.8) and (4.11) that the Hessian of r|d·n|2 becomes singular at a critical point
⇣ 2 S� solving (4.12) only if

|⇣ � x

o| = ⇢
1/2

(⇣). (4.13)

Making an appeal to the analysis in Section 3(c) and Appendix B, one subsequently finds that the
integral over S� in (4.9), on accounting for catastrophes where (4.12) and (4.13) both hold, may
include contributions of orders shown in Table 2.

Table 3. Leading-order contribution in (4.9) of the critical points over S� to T̆(xo, ·, ·)

Catastrophe None Fold Cusp Swallowtail Hyperbolic Elliptic
of r|d⇤·n|2 umbilic umbilic

Contribution O(1) O(k1/6

) O(k1/4

) O(k3/10

) O(k1/3

) O(k1/3

)
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(ii) Contribution of diffraction catastrophes

Proposition 4.4. For sufficiently large k, the contribution of caustics to ˘T in (4.7) behaves as
Z

˜B�

Tc d⌦
d

= O(k↵
), 1

4

6 ↵6 2

3

. (4.14)

Proof. The idea behind establishing (4.14) is to expose the measure of the vanishing support, | ˜B�|,
of a region on the unit sphere where the non-uniform approximation fails – indicated by the
shaded area in Fig. 5(b). In particular as d (for given x

o) leaves the neighborhood ˜B� ⇢⌦ of the
bifurcation set, special functions involved in describing the diffraction catastrophes, denoted by

 (k�1c
1

, . . . , k�M cM ), M = cod(�) < 4 (4.15)

(see Section 3(c) and Appendix B), approach their large-argument asymptotics [25] due to
growing magnitude, |c| = (c2

1

+ ···+ c2M )

1/2, of the featured minimal control space. This in turn
reduces the germane uniform approximation to either its non-uniform counterpart, or zero –
on the dark side of some caustics (e.g. fold) due to absence of real stationary points [40]. On
denoting bm = k�mcm, such transition in (4.15) occurs when (b2

1

+ ···+ b2M )

1/2

= O(1), see Fig. 14
in Appendix B (supplementary material) as an example. Accordingly, one obtains

|c| 6 O(k��min
m

), �min
m = min{�

1

, . . . ,�M} > 0 (4.16)

as a sufficient condition for estimating the extent of ˜B�, where �min
m are given in Table 2.

The next step in the analysis is to establish (for given x

o) a linearized relationship between |c|
and dist(d, B�) on the unit sphere, in a small neighborhood of the bifurcation set. In the context
of Fig. 5(b), it is recalled that the fold caustics (cod(�) = 1) translate into smooth non-intersecting
curves in B�⇢⌦, while the catastrophes of higher codimension are projected as points in B�. In
this setting, dist(d, B�) is identified as the normal spherical distance to a curve (resp. spherical
distance to a point) when cod(�) = 1 (resp. cod(�) > 1). On writing the sought relationship as
|c| = V · dist(d, B�), one finds from (4.16) that

˜B� =

�

d 2⌦ : dist(d, B�) 6 V �1O(k��min
m

)

 

(4.17)

for sufficiently large k, noting that V > 0 since the bifurcation set B�⇢⌦ is closed (see Remark 5).
To estimate V , consider first a fold bifurcation point d

o2 B� for given x

o, and let ⇣

⇤ 2 S denote
the affiliated critical point on the boundary of the scatterer. In this case c = c, and the Hessian of �
is of corank one. On account of the Splitting Lemma (3.23) and Taylor expansion of �(⇣) about ⇣

⇤,
there exist local surface coordinates (�, ⌧) such that

�(⇣)

�

�

d

o ' �� +

1

2

�
(2)

� �2

+

1

6

�0
�
00 ⌧3, �

(2)

� =

@2�

@�2

�

�

�

⇣

⇤
, �0

�
00

=

@3�

@⌧3

�

�

�

⇣

⇤
, ⇣ ' ⇣

⇤
+ � ˆ

s + ⌧ ˆ

t

(4.18)
where �� = �(⇣

⇤
); �(2)

� and �0
�
00 are O(1), and (

ˆ

s,ˆt) are the unit vectors tangent to (�, ⌧) at ⇣

⇤, used
to describe ⇣ to the leading order. The objective is to find the variation in c due to infinitesimal
perturbation dd?d

o. Using (4.18) and definition �= ⇣ ·d� r where r = |xo� ⇣|, one finds

�(⇣)

�

�

d

o
+dd

' ˜�� +

1

2

�
(2)

� �2

+ (dd·ˆs)� +

1

6

�0
�
00 ⌧3

+ (dd·ˆt)⌧, ˜�� = �� + dd·⇣⇤. (4.19)

By considering the fold universal unfolding as in Table 2, one finds from (4.19) via mapping
t = (|�0

�
00|/2)

1/3⌧ that

|c | =

�

�

1

2

�0
�
00�
�

� 1
3 |dd·ˆt|.

When dd is parallel to d

o⇥ ˆ

t, c remains zero to the leading order. This shows that d

o⇥ ˆ

t is tangent
to the fold curve at d

o 2 B�. Subsequently, the width of a stripe-like region ˜B� surrounding B� is
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exposed by considering dd in the plane containing d

o and ˆ

t, which yields

|dd·ˆt| = |dd|
q

|do·n|2 + sin(#)

2

(1 � |do·n|2) > |dd| |do·n| ) V >
�

�

1

2

�0
�
00�
�

� 1
3 |do·n|, (4.20)

where |dd| = dist(d, B�), n = n(⇣

⇤
), and # is the angle between ˆ

t and the plane containing d

o

and n. From (4.17), (4.20) and Table 2, one finds an upper-bound estimate

| ˜B�|cod(�)=1

= O
�

|do·n|�1 k��min
m

�

= O
�

|do·n|�1 k�2/3

�

. (4.21)

Note that the integrands (3.6) underpinning Tc scale with |do·n|, so that the situations of widening
˜B� when |do·n| ! 0 pose no problem in terms of the contribution of the fold catastrophes to (4.14).

From (4.20), it is seen that the sole situation precluding V = O(1) is |do·n(⇣

⇤
)| ⌧ 1. As shown

in Appendix A(b), this requires that the distance between x

o and the critical point, |xo� ⇣

⇤|,
behaves as O(|do·n|±1

), see also Fig. 15. Due to the regularity of S, however, catastrophes with
cod(�) > 1 cannot occur arbitrarily close to S, while the sampling points where |xo� ⇣

⇤| � 1 are
outside of B

1

. As a result, V = O(1) for higher-codimension catastrophes and consequently

| ˜B�|cod(�)>1

= O
�

k�2�min
m

�

, (4.22)

where �min
m are given in Table 2, and factor 2 in the exponent arises from the fact that ˜B�|cod(�)>1

assembles the neighborhoods of isolated points, see Fig. 5(b). The claim (4.14) then follows from the
scaling of Tc in Table 2, (3.6), (4.21), and (4.22). For completeness, the effect on (4.14) due to error
of the Kirchhoff approximation (3.1) is examined in Appendix D (supplementary material).

(iii) Contribution of nearby critical points for x

o 2 ˘N✏

Proposition 4.5. For x

o 2 ˘N✏ , the contribution of nearby critical points to ˘T in (4.7) is given by
Z

⌦
T? d⌦

d

1

=

⇡k

(k`)3

n

A
�

k` cos(k`) � sin(k`)
�2

+ B (k`)2 sin(k`)2
o

(4.23)

for sufficiently large k, where `= (x

o�x

?
)·n(x

?
) is the signed normal distance between x

o and the
boundary of the scatterer.

Proof. The single-incident-wave expression for T?
(x

o, ·, ·), given by (3.36), is explicit and permits
direct integration with respect to d. Recall that T?

= 0 for d·n(x

?
) > 0 thanks to (3.1), whereby

the effective integration support in (4.23) is a hemisphere. By taking �n(x

?
) as the zenith

direction of the spherical coordinate system describing ⌦, it is evident from (3.36) that T? is
exclusively a function of the zenith angle |d·n(x

?
)| = cos ✓ and k` so that

Z

⌦
T? d⌦

d

=

Z
2⇡

0

Z⇡/2

0

[T?
](cos ✓, k`) sin ✓ d✓d' = 2⇡

Z
1

0

[T?
](⌧, k`) d⌧, (4.24)

resulting immediately in (4.23).

Remark 6. As discussed in Remark 2, Proposition 4.5 is established under the premise that a hidden
obstacle D is sound-soft. Accordingly, it is of interest to examine the near-boundary variation (4.23) when
(A, B) = (0, 1), i.e. when the vanishing perturbation in (2.6) is likewise of Dirichlet type (see Table 1).
This behavior is shown in Fig. 6(a), which plots (4.23) with (A, B) = (0, 1) versus k` in a neighborhood
of @D. As can be seen from the graph, the leading contribution of T? to ˘T in such case (i) crosses zero
precisely at @D, and (ii) attains extreme negative (resp. positive) value at its first peak inside (resp. outside)
the obstacle, at a normal distance of |k`| < ⇡/2 from the boundary. For completeness, Fig. 6(b) plots the
corresponding distribution of (4.23) assuming (A, B) = (3/2, �1), i.e. taking the vanishing obstacle to be of
“wrong” i.e. Neumann type. From the display, one sees that the near-boundary variation of (4.23) assuming
sound-hard vanishing obstacle is visibly less localized than that using sound-soft perturbation in Fig. 6(a).
This observation will motivate the proposed TS algorithm for high-frequency obstacle reconstruction.

The foregoing developments are now concluded with the main result of this work.
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Figure 6. Contribution of T? to T̆ at k = 300 versus normal distance to the boundary of an extended Dirichlet obstacle:

(a) local variation assuming (A, B) = (0, 1), and (b) variation assuming (A, B) = (3/2, �1).

Theorem 4.6. Consider the inverse scattering problem for a convex Dirichlet obstacle D as in Fig. 1
with far-field sensory data. For sufficiently large k, the full-source-aperture distribution of the scaled TS
indicator (2.6) behaves as

˘T(x

o
)

k↵

= 1

˘N✏
(x

o
)

⇡ k

(k`)3

n

A
�

k` cos(k`) � sin(k`)
�2

+ B (k`)2 sin(k`)2
o

, ↵6 2/3 (4.25)

under the premise of diffraction catastrophes with codimension less than four, where ˘N✏ is a 2✏-thick shell
(for some ✏= O(k�1

) > 2⇡/k) with mid-plane @D; `=(x

o�x

?
)·n(x

?
) is the signed normal distance

between x

o and @D, and the coefficient pair (A, B) takes values as in Table 1 depending of the type of
(impenetrable) vanishing perturbation used to probe the domain.

Proof. The claim is a direct consequence of Lemma 4.2 and Propositions 4.3–4.5. As shown in
Appendix D, the result is resilient to the error due to Kirchhoff approximation (3.1).

Remark 7. Note that (4.25) ensures the high-frequency reconstruction of a Dirichlet obstacle assuming
full source aperture (d 2⌦). At a glance, such requirement may appear excessive in light of the uniqueness-
of-reconstruction result for sound-soft obstacles (Corollary 5.3 in [22]) with only a single incident plane
wave. As examined in [30], however, the latter claim holds only for scatterers contained within a ball of
radius R� ' 4.49/k – which inherently precludes the high-wavenumber case considered herein. Indeed the
numerical results in Sec. 5 (see for instance Fig. 9) demonstrate that, at wavelengths that are small relative
to the obstacle size, the TS reconstruction with a singe incident plane wave provides no information about
the “dark side” of the obstacle. On the other hand, from Theorem 5.1 in [22] it follows that the above
uniqueness result does hold for any wavenumber k provided that the obstacle is illuminated by an infinite
number of incident plane waves – which is consistent with the claim of Theorem 4.6.

(c) Neumann obstacle
For a sound-hard obstacle, the physical optics approximation [12] reads

u =

(

2ui on S f

0 on Sb , u,n = 0 on S = @D. (4.26)

Applying this condition with ui
= e�ikx·d to (2.8), followed by the use of (2.13) and (2.14) to

address the component integrals over � obs, results in a TS formula for Neumann obstacle that is
structurally similar to (3.3). In particular, the kernel in the “sound-hard” counterpart of (3.3) can
be shown to (i) feature the identical phase function ⇣ ·d ± r, (ii) remain regular as x

o ! S f, and
(iii) vanish on @S f. The end result of the analysis is given by the following statement.

Theorem 4.7. Consider the inverse scattering problem for a convex Neumann obstacle D as in Fig. 1
with far-field sensory data. For sufficiently large k, the full-source-aperture distribution of the scaled TS



22

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

indicator (2.6) behaves as

˘T(x

o
)

k↵

= 1

˘N✏
(x

o
)

�⇡ k

(k`)3

n

A
�

k` cos(k`) � sin(k`)
�2

+ B (k`)2 sin(k`)2
o

, ↵6 2/3 (4.27)

under the premise of diffraction catastrophes with codimension less than four, where ˘N✏ is a 2✏-thick shell
(for some ✏= O(k�1

) > 2⇡/k) with mid-plane @D; `=(x

o�x

?
)·n(x

?
) is the signed normal distance

between x

o and @D, and the coefficient pair (A, B) takes values as in Table 1 depending of the type of
(impenetrable) vanishing perturbation used to probe the domain.

Proof. Claim (4.27) is established by the steps analogous to those entailed in the proof of (4.25),
see Appendix E (supplementary material) for details.

(d) Unscaled TS distribution
To establish a direct link with the results of earlier TS studies on impenetrable obstacles [e.g. 38],
it is of interest to rewrite (4.25) and (4.27) in terms of the original (i.e. unscaled) TS formula (2.5),
and to further assume prior knowledge of obstacle type by letting (A, B) = (0, 1) (resp. (3/2, �1))
when reconstructing hidden Dirichlet (resp. Neumann) anomalies. On recalling the relationship
T (x

o
) = k�� T(x

o
) according to (2.6) and Table 1, one consequently finds from Theorem 4.6 and

Theorem 4.7 that
˘T (x

o
) = k�2

˘T|
(A,B)=(0,1)

k↵

= 1

˘N✏
(x

o
)

⇡ k�1

(k`)

n

sin(k`)2
o

, ↵6 �4/3

(4.28)

in the case of Dirichlet obstacles probed by sound-soft perturbations, and

˘T (x

o
) =

˘T|
(A,B)=(3/2,�1)

k↵

= 1

˘N✏
(x

o
)

�⇡ k

(k`)3

n

3

2

�

k` cos(k`) � sin(k`)
�

2 � (k`)2 sin(k`)2
o

, ↵6 2/3

(4.29)

in terms of Neumann anomalies probed by sound-hard perturbations. As can be seen from (4.28)
and (4.29), the two (unscaled) asymptotic behaviors are quite distinct, yet both localized near @D.
This can be verified by noting that the Dirichlet variation (4.28) is, up to the factor k�2, given by
Fig. 6(a), while the Neumann variation (4.29) is – up to the sign factor – shown in Fig. 6(b).

(e) Reconstruction scheme
A comparison between (4.25) and (4.27) reveals that for (A, B) fixed, the leading-order behavior
of ˘T simply changes sign when (2.6) is applied toward the reconstruction of a hidden Dirichlet vs.
hidden Neumann obstacle. Accordingly, the counterpart of Fig. 6 for a hidden Neumann anomaly is
obtained via reflection of the featured diagrams about the k`-axis. This opens two distinct avenues
toward the high-frequency TS reconstruction of impenetrable obstacles:

Algorithm 1. When the nature of D is known beforehand, (i) compute ˘T(x

o
) with

commensurate trial parameters ((A, B) = (0, 1) for Dirichlet anomaly, (A, B) = (3/2, �1) for
Neumann anomaly) and (ii) reconstruct @D as the zero level set of ˘T separating its extreme negative
and extreme positive values. The extreme ˘T-values inside the reconstruction are always negative.

Algorithm 2. When the nature of D is unknown, compute ˘T(x

o
) with (A, B) = (0, 1) and

reconstruct @D as the zero level set of ˘T separating its extreme negative and extreme positive
values. When the extreme ˘T-values to the inside of the reconstruction are negative (resp. positive),
the impenetrable obstacle is of Dirichlet (resp. Neumann) type.

In this setting, Algorithm 2 is generally preferred due the to the facts that: (a) the obstacle type
is revealed rather than required as prior information, and (b) setting (A, B) = (0, 1) (as opposed to
(A, B) = (3/2, �1)) allows for stronger localization of the extreme ˘T-values near @D, see Fig. 6.
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5. Numerical results
A computational experiment is devised to illustrate the performance of the TS as an imaging tool
in the high-frequency regime. The focus is on elucidating how does (3.3) relate to the boundary
of a convex Dirichlet obstacle, and how is the numerical distribution thereof approximated by the
closed-form expression (4.25) in the case of the full source aperture. The sensing arrangement is
shown in Fig. 7(a), where D is an ellipsoidal anomaly with semi-axes (0.2, 0.08, 0.8). In what
follows, the TS distribution is computed in the obstacle’s mid-section ⇧ perpendicular to its
major axis, assuming incident plane waves with k = 300 (wavelength �= 0.021) propagating in
direction d k⇧ . In this case, the computation of TS is facilitated by two critical observations: i) for
x

o within the square “patch” shown in Fig. 7(a), the critical points on S f are confined to S f \⇧ ,
and ii) the germane catastrophes are of either type fold or cusp, i.e. cod(�) 6 2. Note, however,
that the caustics of higher codimension may occur in out-of-plane situations – when either d ,⇧
or x

o /2⇧ – see Fig. 7(b) for an example projection of the bifurcation set B�(d, xo
) on ⌦.

�

D

�

�obs

d � �

�

�

d � �

S

(a) (b)

sampling
region

B�

�

⇤2�

Figure 7. Example problem: (a) sensing configuration, and (b) bifurcation set B�(d, xo) ⇢ ⌦ with affiliated critical points

⇣

⇤2 S (dark curves) for the sampling point x

o = p shown in Fig. 9(b). Loci d k⇧ and matching ⇣

⇤ are shown in white.

(a) Applicability of Kirchhoff approximation
One may recall that the implicit assumptions behind (3.3) – used hereon as the basis for numerical
evaluation of TS – are that: i) the sensory data are of far-field type (see Remark 1), and ii) the
Kirchhoff approximation (3.1) applies. In this setting, it is of interest to assess the accuracy
of (3.1) for the testing configuration described above. Due to lack of suitable 3D solutions, the
validation is performed in a two-dimensional setting, assuming scattering by a sound-soft cylinder
whose cross-section equals S \⇧ in Fig. 7. With such premise, Fig. 8 compares the analytical
solution [17] for the far-field pattern, ũ1, of the scattered field given by

ũ(x) =

eikR

p
kR

ũ1(↵), R = |x| ! 1,

with that stemming from the Kirchhoff approximation. As can be seen from the display, the
agreement between the two solutions is rather satisfactory.
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Kirchhoff approximation

Analytical solution [17]
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Re[ũ1]

�

�
0 1 2 3 4 5 6

Figure 8. Far-field pattern at k = 300 of the scattered field generated by an infinite sound-soft cylinder with a = 0.2,

b = 0.08 and d = (0, 1). The relative error (L2-norm) committed by the Kirchhoff approximation is less than 6%.
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(b) Single plane-wave incidence
With the aid of the high-frequency approximations described in Section 3 and Appendix B, the
TS field (4.1) is computed via the following steps: i) the 0.5 ⇥ 0.5 square computational domain
within ⇧ (see Fig. 7(a)) is discretized by 10

6 pixels, nearly 42 per wavelength; ii) the boundary
curve S f

(d) \⇧ is split into 10

4 segments centered at ⇣

n, n = 1, 10

4; and iii) starting from ⇣

1,
the contribution of ⇣

n to (4.1) is computed (via either near-boundary, uniform, or non-uniform
approximation) along rays II±2⇧ , and accordingly used to “paint” the pixels. In doing so, the
use is made of the Van der Corput neutralizers [12] to prevent double-counting of individual
contributions. Assuming the ellipsoidal anomaly to be of Dirichlet type, the resulting TS map
is shown in Fig. 9(a), which clearly reflects the presence of fold- and cusp-type caustics. For
completeness, Fig. 9(b) plots the corresponding diagram obtained via numerical integration
of (3.3), while Fig. 9(c) compares the two estimates along an example ray II�. As can be seen from
the panel, the near-boundary, uniform, and non-uniform approximations smoothly transition into
one another and overlap with the numerical solution.

�0.2 �0.1 0 0.1 0.2

0

1

�1

�104

S

Sf

d

0 0.1 0.2 0.3 0.4

−8

−4,000

0

4,000

8,000

cuspfold non-degenerate

�103

0.10 0.2 0.3 0.4

5

�5

�0.2 �0.1 0 0.1 0.2

0.1

�0.1

0

0.2

�0.2

�

p

T

r

(a) (b)
(c)

r

0 0.1 0.2 0.3

−500

−250

0

250

500

non-
degeneratecuspfoldN✏

250

0.10 0.2 0.3

�250

T|(0,1)

r

(a)
d

�

0.1

�0.1

0

0.2

�0.2

fold

cusp

(c)

II-

(b)

S

Sf
p

r

�0.2 �0.1 0 0.1 0.2 �0.2 �0.1 0 0.1 0.2

Figure 9. Distribution of T|(A,B)=(0,1) in the ⇧-plane for a Dirichlet obstacle, d k⇧ , and ✓ = 0.35⇡: (a) numerical

integration, (b) high-frequency approximation, and (c) comparison along ray II� (solid - numerics, dashed - asymptotics).

In the context of Remark 7, one may observe from Fig. 9 that obstacle illumination by a single
incident wave yields no information about the “dark side” of the anomaly thanks to the fact that
the scattered field vanishes (to the leading order) there, see (3.1). Recalling Corollary 5.3 in [22],
on the other hand, it is further noted (using the length scale in Fig. 9) that D would have to be
contained within a ball of radius R� ' 4.49/k ' 0.015 [30] in order to guarantee the uniqueness
of obstacle reconstruction with only a single incident plane wave.

(c) Partial and full source aperture
In what follows, the partial- and full-source-aperture simulations of TS are effected by first
i) integrating (3.4) numerically to obtain (3.3) – as a function of x

o – for given d, and then
ii) integrating the latter result (also numerically) with respect to d over a prescribed subset of ⌦.
In the context of the single-incident-wave example in Fig. 9, it is first of interest to integrate T(x

o
)

with respect to d k⇧ , i.e. with respect to the in-plane angle of incidence ✓ shown in Fig. 9(a). On
denoting for brevity ˘T⇧ =

R
⇧ Td⌦

d

, it can be shown by following the analysis in Section 4(b) that
the contributions of T?, Tc and TII± to ˘T⇧ behave respectively as O(k), O(k↵

) and O(kµ
), where

↵6 3/4 and µ 6 3/4 due to the fact that the codimension of catastrophes in the example does not
exceed two. Such reconstruction ability of ˘T⇧ is illustrated in Fig. 10, which plots the evolution
of TS with increasing in-plane aperture. Note that (i) the bright sector of the unit circle in each
panel depicts the source aperture; (ii) the TS distributions are thresholded at 45%; (iii) the bottom
right panel plots ˘T⇧ , and (iv) the full-source-aperture result assumes 80 equidistant plane-wave
directions, which approximate the continuum of unit vectors d spanning the unit circle.

In practice, one may expect to obtain a satisfactory TS reconstruction – at least at lower
frequencies – with only a limited number of incident plane waves, see e.g. [18, 31]. To examine this
possibility, Fig. 11 plots four “coarse” approximations of ˘T⇧ , computed with 4 6 N 6 32 incident
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use is made of the Van der Corput neutralizers [6] to prevent double-counting of individual
contributions. Assuming the ellipsoidal anomaly to be of Dirichlet type, the resulting TS map
is shown in Fig. 8(a), which clearly reflects the presence of fold- and cusp-type caustics. For
completeness, Fig. 8(b) plots the corresponding diagram obtained via “brute-force” numerical
integration of (3.5), while Fig. 8(c) compares the two estimates along example ray II�. As can
be seen from the latter panel, the (i) near-boundary, (ii) Airy, (iii) Pearcey and (iv) non-uniform
approximations smoothly transition into one another and overlap with the numerical solution.

(b) Partial and full source aperture
As demonstrated by Fig. 8, the TS map due to single incident d is dominated by the caustics, and
reveals little about the geometry of a hidden anomaly. In such a context, it is of interest to integrate
T(x

o, �, �) with respect to d k⇧ , i.e. with respect to the in-plane angle of incidence ✓ shown in
Fig. 8(a). On denoting for brevity ˘T⇧ =

R
⇧ Td⌦

d

, it can be shown by following the analysis in
Section 4(b) that the contributions of T?, Tc and TII± to ˘T⇧ behave respectively as O(k), O(k↵

)

and O(kµ
), where ↵ 6 3/4 and µ 6 3/4 due to the fact that the codimension of catastrophes in

the example does not exceed two. Such reconstruction ability of ˘T⇧ is illustrated in Fig. 9 which
plots the evolution of TS (assuming Dirichlet anomaly) with increasing in-plane aperture, noting
that (i) the bright sector of the unit circle in each panel depicts the source aperture, (ii) the TS
distributions are thresholded at 45%, and (iii) the bottom right panel plots ˘T⇧ .

Figure 9. Imaging of a Dirichlet anomaly by T(xo, 20, 1): evolution of TS with increasing (in-plane) source aperture.

For completeness, the reconstruction of a Dirichlet obstacle via ˘T⇧(x

o, 20, 1) is compared in
Fig. 10 to that of a Neumann anomaly by ˘T⇧(x

o, 0, �). Here the left, middle, and right panels
plot respectively ˘T⇧ , thresholded ˘T⇧ , and example near-boundary variation of ˘T⇧ (along the
indicated normal) versus the contribution of T? only. Note that the featured images are obtained
by adopting Algorithm 1, which samples each anomaly with physically-compatible vanishing
obstacle. As can be seen from Fig. 10(e), this leads to apparent “smearing” in the case of a
Neumann obstacle. In contrast, its image obtained via Algorithm 2, i.e. using ˘T⇧(x

o, 20, 1) as a
sampling tool, is given by the negative of Fig. 10(b) and thus better localized.

To provide the full-source-aperture counterpart of the result in Fig 10(c) – computed at boundary
point x

?
= (0.178, 0.036, 0), Fig. 11 compares the analytical expression (4.25) with a numerical

estimate of ˘T ⌘ ˘T⌦ , obtained via quadrature and superposition of (3.5) for 512 incident plane-
wave directions, uniformly distributed over ⌦. For generality, the comparison is made at both
in-plane boundary point x

?
= (0.178, 0.036, 0) (left panel), and its out-of-plane companion x

?
=

(0.114, 0.046, 0.470) (right panel). Irrespective of the boundary point, the numerical result closely
follows (4.25) at both k = 300 and k = 600, showing visibly better agreement in the latter case.

Figure 10. Imaging of a Dirichlet anomaly by T|(A,B)=(0,1): evolution of TS with increasing (in-plane) source aperture.

wave directions (indicated on the unit circle) spanning [0, 2⇡]. As can be seen from the display, the
high-frequency TS reconstruction is notably sensitive to the density of plane-wave illumination,
primarily due to the apparent effect of caustics. This finding appears to be consistent with the high-
frequency numerical study in [29] on the TS reconstruction of Neumann obstacles in R2, where
120 incident plane wave directions were deployed to obtain the reported full-aperture images.

N = 4 N = 8 N = 16 N = 32
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(b) Single plane-wave incidence
With the aid of the high-frequency approximations described in Section 3 and Appendix B,
the TS field (4.1) is computed via the following steps: i) the 0.5 ⇥ 0.5 square computational
domain within ⇧ (see Fig. 7(a)) is discretized by 10

6 pixels, nearly 42 per wavelength; ii) the
boundary curve S f

(d) \ ⇧ is split into 10

4 segments centered at ⇣

n, n = 1, 10

4; and iii) starting
from ⇣

1, the contribution of ⇣

n to (4.1) is computed (via either near-boundary, uniform, or non-
uniform approximation) along rays II±2 ⇧ , and accordingly used to “paint” the pixels. In
doing so, the use is made of the Van der Corput neutralizers [12] to prevent double-counting of
individual contributions. Assuming the ellipsoidal anomaly to be of Dirichlet type, the resulting
TS map is shown in Fig. 9(a), which clearly reflects the presence of fold- and cusp-type caustics.
For completeness, Fig. 9(b) plots the corresponding diagram obtained via (3.3) and numerical
integration of (3.4), while Fig. 9(c) compares the two estimates along an example ray II�. As can
be seen from the panel, the near-boundary, uniform, and non-uniform approximations smoothly
transition into one another and overlap with the numerical solution.
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Figure 4. Testing configuration: a) photograph of the damaged plate, and b) boundary conditions
and spatial arrangement of the LDV scan points for five individual source locations (Spiezo

k , k = 1, 5).

3.4. Reconstruction procedure

As shown in a number of previous studies by way of numerical simulations, the performance of
TS-based defect reconstruction is strongly a�ected by the apertures of both source and observation
grids. In particular, each of the two grids should maximize the solid angle around the (expected)
damaged region to make the best use of a fixed number of experimental measurements. In this
vein, the testing configuration adopted in the present study is shown in Fig. 4b, consisting of five
dual-purpose (source/observation) segments Spiezo

k , k = 1, 5 and 22 “pure” observation segments
Sobs

j , j = 1, 22. For the kth source location, the induced elastodynamic wavefield is monitored
over 66 LDV scan points distributed over the left, upper, and right edge of the plate. Here the
measurements from scan points 1–4, 63–66, and the points belonging to Spiezo

k are used to impose
the Dirichlet data on SD = Spiezo

k � S legs, while the remainder are deployed to provide the sensory
data u

obs on
Sobs = (�22

j=1S
obs
j ) � (�5

l=1S
piezo

l ), l �= k,

where each segment Sobs
j serves as a 2-scan-point motion sensor depicted in Fig. 3c. In the

experiment, the piezoceramic source transducer is first placed at Spiezo

1 to illuminate the damaged
area “from the left”; the LDV motion sensing is then performed at 66 scan points distributed over
the left, upper, and right edge of the plate. The data thus obtained (uobs) are then used to compute
the free and adjoint elastodynamic states [u, �[u]] and [û, �[û]], whose bilinear form (12) gives
the a�liated TS distribution. The source transducer is then moved to the second location Spiezo

2 ,
for which the testing and computational procedure are performed anew. In total, five source
locations were used, resulting in five respective TS maps. In what follows, the superposition of
these individual TS distributions is used as a tool to highlight the e�ect of source aperture on the
quality of TS reconstruction. To facilitate the discussion, the set of excitation sources that is used
to compute any given TS map is denoted by S � {1, 2, 3, 4, 5}.
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Figure 9. Distribution of T|(A,B)=(0,1) in the ⇧-plane for d k⇧ and ✓ = 0.35⇡: (a) numerical integration, (b) high-

frequency approximation, and (c) comparison along example ray II� (solid line - numerics, dashed line - asymptotics).

In the context of Remark 7, one may observe from Fig. 9 that the obstacle illumunaton by a
single incident wave yields no information about the “dark side” of the scatterer thanks to the
fact that the scattererd field vanishes there (to the leading order), see (3.1). Recalling Corollary 5.3
in [22], on the other hand, it is further noted (using the length scale in Fig. 9) that that D would
have to be contained within a ball of radius R� ' 4.49/k ' 0.015 [30] in order to guarantee the
uniqueness of obstacle reconstruction with only a single incident plane wave.

(c) Partial and full source aperture
In what follows, the partial- and full-source-aperture simulations of TS are effected by first
i) integrating (3.4) numerically to obtain (3.3) – as a function of x

o – for given d, and then
ii) integrating the latter result (also numerically) with respect to d over a prescribed subset of ⌦.
In the context of the single-incident-wave example in Fig. 9, it is first of interest to integrate T(x

o
)

with respect to d k⇧ , i.e. with respect to the in-plane angle of incidence ✓ shown in Fig. 9(a). On
denoting for brevity ˘T⇧ =

R
⇧ Td⌦

d

, it can be shown by following the analysis in Section 4(b) that
the contributions of T?, Tc and TII± to ˘T⇧ behave respectively as O(k), O(k↵

) and O(kµ
), where

↵ 6 3/4 and µ 6 3/4 due to the fact that the codimension of catastrophes in the example does not
exceed two. Such reconstruction ability of ˘T⇧ is illustrated in Fig. 10, which plots the evolution
of TS with increasing in-plane aperture. Note that (i) the bright sector of the unit circle in each
panel depicts the source aperture; (ii) the TS distributions are thresholded at 45%; (iii) the bottom
right panel plots ˘T⇧ , and (iv) the full-source-aperture result assumes 80 equidistant plane-wave
direcitons, which approximate the continuum of unit vectors d spanning the unit circle.

In practice, a satisfactory TS reconstruction can be obtained – at least at lower frequencies
– with only a limited number of incident plane waves, see e.g. [18, 31]. To examine this issue,
Fig. 11 plots four “coarse” approximations of ˘T⇧ , computed respectively with 4, 8, 16 and 32
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(b) Single plane-wave incidence
With the aid of the high-frequency approximations described in Section 3 and Appendix B,
the TS field (4.1) is computed via the following steps: i) the 0.5 ⇥ 0.5 square computational
domain within ⇧ (see Fig. 7(a)) is discretized by 10

6 pixels, nearly 42 per wavelength; ii) the
boundary curve S f

(d) \ ⇧ is split into 10

4 segments centered at ⇣

n, n = 1, 10

4; and iii) starting
from ⇣

1, the contribution of ⇣

n to (4.1) is computed (via either near-boundary, uniform, or non-
uniform approximation) along rays II±2 ⇧ , and accordingly used to “paint” the pixels. In
doing so, the use is made of the Van der Corput neutralizers [12] to prevent double-counting of
individual contributions. Assuming the ellipsoidal anomaly to be of Dirichlet type, the resulting
TS map is shown in Fig. 9(a), which clearly reflects the presence of fold- and cusp-type caustics.
For completeness, Fig. 9(b) plots the corresponding diagram obtained via (3.3) and numerical
integration of (3.4), while Fig. 9(c) compares the two estimates along an example ray II�. As can
be seen from the panel, the near-boundary, uniform, and non-uniform approximations smoothly
transition into one another and overlap with the numerical solution.
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Figure 4. Testing configuration: a) photograph of the damaged plate, and b) boundary conditions
and spatial arrangement of the LDV scan points for five individual source locations (Spiezo

k , k = 1, 5).

3.4. Reconstruction procedure

As shown in a number of previous studies by way of numerical simulations, the performance of
TS-based defect reconstruction is strongly a�ected by the apertures of both source and observation
grids. In particular, each of the two grids should maximize the solid angle around the (expected)
damaged region to make the best use of a fixed number of experimental measurements. In this
vein, the testing configuration adopted in the present study is shown in Fig. 4b, consisting of five
dual-purpose (source/observation) segments Spiezo

k , k = 1, 5 and 22 “pure” observation segments
Sobs

j , j = 1, 22. For the kth source location, the induced elastodynamic wavefield is monitored
over 66 LDV scan points distributed over the left, upper, and right edge of the plate. Here the
measurements from scan points 1–4, 63–66, and the points belonging to Spiezo

k are used to impose
the Dirichlet data on SD = Spiezo

k � S legs, while the remainder are deployed to provide the sensory
data u

obs on
Sobs = (�22

j=1S
obs
j ) � (�5

l=1S
piezo

l ), l �= k,

where each segment Sobs
j serves as a 2-scan-point motion sensor depicted in Fig. 3c. In the

experiment, the piezoceramic source transducer is first placed at Spiezo

1 to illuminate the damaged
area “from the left”; the LDV motion sensing is then performed at 66 scan points distributed over
the left, upper, and right edge of the plate. The data thus obtained (uobs) are then used to compute
the free and adjoint elastodynamic states [u, �[u]] and [û, �[û]], whose bilinear form (12) gives
the a�liated TS distribution. The source transducer is then moved to the second location Spiezo

2 ,
for which the testing and computational procedure are performed anew. In total, five source
locations were used, resulting in five respective TS maps. In what follows, the superposition of
these individual TS distributions is used as a tool to highlight the e�ect of source aperture on the
quality of TS reconstruction. To facilitate the discussion, the set of excitation sources that is used
to compute any given TS map is denoted by S � {1, 2, 3, 4, 5}.
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frequency approximation, and (c) comparison along example ray II� (solid line - numerics, dashed line - asymptotics).

In the context of Remark 7, one may observe from Fig. 9 that the obstacle illumunaton by a
single incident wave yields no information about the “dark side” of the scatterer thanks to the
fact that the scattererd field vanishes there (to the leading order), see (3.1). Recalling Corollary 5.3
in [22], on the other hand, it is further noted (using the length scale in Fig. 9) that that D would
have to be contained within a ball of radius R� ' 4.49/k ' 0.015 [30] in order to guarantee the
uniqueness of obstacle reconstruction with only a single incident plane wave.

(c) Partial and full source aperture
In what follows, the partial- and full-source-aperture simulations of TS are effected by first
i) integrating (3.4) numerically to obtain (3.3) – as a function of x

o – for given d, and then
ii) integrating the latter result (also numerically) with respect to d over a prescribed subset of ⌦.
In the context of the single-incident-wave example in Fig. 9, it is first of interest to integrate T(x

o
)

with respect to d k⇧ , i.e. with respect to the in-plane angle of incidence ✓ shown in Fig. 9(a). On
denoting for brevity ˘T⇧ =

R
⇧ Td⌦

d

, it can be shown by following the analysis in Section 4(b) that
the contributions of T?, Tc and TII± to ˘T⇧ behave respectively as O(k), O(k↵

) and O(kµ
), where

↵ 6 3/4 and µ 6 3/4 due to the fact that the codimension of catastrophes in the example does not
exceed two. Such reconstruction ability of ˘T⇧ is illustrated in Fig. 10, which plots the evolution
of TS with increasing in-plane aperture. Note that (i) the bright sector of the unit circle in each
panel depicts the source aperture; (ii) the TS distributions are thresholded at 45%; (iii) the bottom
right panel plots ˘T⇧ , and (iv) the full-source-aperture result assumes 80 equidistant plane-wave
direcitons, which approximate the continuum of unit vectors d spanning the unit circle.

In practice, a satisfactory TS reconstruction can be obtained – at least at lower frequencies
– with only a limited number of incident plane waves, see e.g. [18, 31]. To examine this issue,
Fig. 11 plots four “coarse” approximations of ˘T⇧ , computed respectively with 4, 8, 16 and 32
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(b) Single plane-wave incidence
With the aid of the high-frequency approximations described in Section 3 and Appendix B,
the TS field (4.1) is computed via the following steps: i) the 0.5 ⇥ 0.5 square computational
domain within ⇧ (see Fig. 7(a)) is discretized by 10

6 pixels, nearly 42 per wavelength; ii) the
boundary curve S f

(d) \ ⇧ is split into 10

4 segments centered at ⇣

n, n = 1, 10

4; and iii) starting
from ⇣

1, the contribution of ⇣

n to (4.1) is computed (via either near-boundary, uniform, or non-
uniform approximation) along rays II±2 ⇧ , and accordingly used to “paint” the pixels. In
doing so, the use is made of the Van der Corput neutralizers [12] to prevent double-counting of
individual contributions. Assuming the ellipsoidal anomaly to be of Dirichlet type, the resulting
TS map is shown in Fig. 9(a), which clearly reflects the presence of fold- and cusp-type caustics.
For completeness, Fig. 9(b) plots the corresponding diagram obtained via (3.3) and numerical
integration of (3.4), while Fig. 9(c) compares the two estimates along an example ray II�. As can
be seen from the panel, the near-boundary, uniform, and non-uniform approximations smoothly
transition into one another and overlap with the numerical solution.

0 0.1 0.2 0.3 0.4

−8

−4,000

0

4,000

8,000

+
-

(b) (c)

S

Sf

�0.2 �0.1 0 0.1 0.2

(b)

cuspfold
0.10 0.2 0.3 0.4

(c)T(xo, �, �)

non-
degenerate

5e3

�5e3

12

a)

9 cm
10 cm

0.6 cm

Bhole

Bslit

SD

SN

1
4

18
19
20

67
64

13

14

1.5 cm

Spiezo
5

Spiezo
4Spiezo

3
Spiezo

2

Spiezo
1

1
4

13

14

63
66

b)

Sobs
5

Sobs �SN

Figure 4. Testing configuration: a) photograph of the damaged plate, and b) boundary conditions
and spatial arrangement of the LDV scan points for five individual source locations (Spiezo

k , k = 1, 5).

3.4. Reconstruction procedure

As shown in a number of previous studies by way of numerical simulations, the performance of
TS-based defect reconstruction is strongly a�ected by the apertures of both source and observation
grids. In particular, each of the two grids should maximize the solid angle around the (expected)
damaged region to make the best use of a fixed number of experimental measurements. In this
vein, the testing configuration adopted in the present study is shown in Fig. 4b, consisting of five
dual-purpose (source/observation) segments Spiezo

k , k = 1, 5 and 22 “pure” observation segments
Sobs

j , j = 1, 22. For the kth source location, the induced elastodynamic wavefield is monitored
over 66 LDV scan points distributed over the left, upper, and right edge of the plate. Here the
measurements from scan points 1–4, 63–66, and the points belonging to Spiezo

k are used to impose
the Dirichlet data on SD = Spiezo

k � S legs, while the remainder are deployed to provide the sensory
data u

obs on
Sobs = (�22

j=1S
obs
j ) � (�5

l=1S
piezo

l ), l �= k,

where each segment Sobs
j serves as a 2-scan-point motion sensor depicted in Fig. 3c. In the

experiment, the piezoceramic source transducer is first placed at Spiezo

1 to illuminate the damaged
area “from the left”; the LDV motion sensing is then performed at 66 scan points distributed over
the left, upper, and right edge of the plate. The data thus obtained (uobs) are then used to compute
the free and adjoint elastodynamic states [u, �[u]] and [û, �[û]], whose bilinear form (12) gives
the a�liated TS distribution. The source transducer is then moved to the second location Spiezo

2 ,
for which the testing and computational procedure are performed anew. In total, five source
locations were used, resulting in five respective TS maps. In what follows, the superposition of
these individual TS distributions is used as a tool to highlight the e�ect of source aperture on the
quality of TS reconstruction. To facilitate the discussion, the set of excitation sources that is used
to compute any given TS map is denoted by S � {1, 2, 3, 4, 5}.
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frequency approximation, and (c) comparison along example ray II� (solid line - numerics, dashed line - asymptotics).

In the context of Remark 7, one may observe from Fig. 9 that the obstacle illumunaton by a
single incident wave yields no information about the “dark side” of the scatterer thanks to the
fact that the scattererd field vanishes there (to the leading order), see (3.1). Recalling Corollary 5.3
in [22], on the other hand, it is further noted (using the length scale in Fig. 9) that that D would
have to be contained within a ball of radius R� ' 4.49/k ' 0.015 [30] in order to guarantee the
uniqueness of obstacle reconstruction with only a single incident plane wave.

(c) Partial and full source aperture
In what follows, the partial- and full-source-aperture simulations of TS are effected by first
i) integrating (3.4) numerically to obtain (3.3) – as a function of x

o – for given d, and then
ii) integrating the latter result (also numerically) with respect to d over a prescribed subset of ⌦.
In the context of the single-incident-wave example in Fig. 9, it is first of interest to integrate T(x

o
)

with respect to d k⇧ , i.e. with respect to the in-plane angle of incidence ✓ shown in Fig. 9(a). On
denoting for brevity ˘T⇧ =

R
⇧ Td⌦

d

, it can be shown by following the analysis in Section 4(b) that
the contributions of T?, Tc and TII± to ˘T⇧ behave respectively as O(k), O(k↵

) and O(kµ
), where

↵ 6 3/4 and µ 6 3/4 due to the fact that the codimension of catastrophes in the example does not
exceed two. Such reconstruction ability of ˘T⇧ is illustrated in Fig. 10, which plots the evolution
of TS with increasing in-plane aperture. Note that (i) the bright sector of the unit circle in each
panel depicts the source aperture; (ii) the TS distributions are thresholded at 45%; (iii) the bottom
right panel plots ˘T⇧ , and (iv) the full-source-aperture result assumes 80 equidistant plane-wave
direcitons, which approximate the continuum of unit vectors d spanning the unit circle.

In practice, a satisfactory TS reconstruction can be obtained – at least at lower frequencies
– with only a limited number of incident plane waves, see e.g. [18, 31]. To examine this issue,
Fig. 11 plots four “coarse” approximations of ˘T⇧ , computed respectively with 4, 8, 16 and 32
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(b) Single plane-wave incidence
With the aid of the high-frequency approximations described in Section 3 and Appendix B,
the TS field (4.1) is computed via the following steps: i) the 0.5 ⇥ 0.5 square computational
domain within ⇧ (see Fig. 7(a)) is discretized by 10

6 pixels, nearly 42 per wavelength; ii) the
boundary curve S f

(d) \ ⇧ is split into 10

4 segments centered at ⇣

n, n = 1, 10

4; and iii) starting
from ⇣

1, the contribution of ⇣

n to (4.1) is computed (via either near-boundary, uniform, or non-
uniform approximation) along rays II±2 ⇧ , and accordingly used to “paint” the pixels. In
doing so, the use is made of the Van der Corput neutralizers [12] to prevent double-counting of
individual contributions. Assuming the ellipsoidal anomaly to be of Dirichlet type, the resulting
TS map is shown in Fig. 9(a), which clearly reflects the presence of fold- and cusp-type caustics.
For completeness, Fig. 9(b) plots the corresponding diagram obtained via (3.3) and numerical
integration of (3.4), while Fig. 9(c) compares the two estimates along an example ray II�. As can
be seen from the panel, the near-boundary, uniform, and non-uniform approximations smoothly
transition into one another and overlap with the numerical solution.
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Figure 4. Testing configuration: a) photograph of the damaged plate, and b) boundary conditions
and spatial arrangement of the LDV scan points for five individual source locations (Spiezo
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3.4. Reconstruction procedure

As shown in a number of previous studies by way of numerical simulations, the performance of
TS-based defect reconstruction is strongly a�ected by the apertures of both source and observation
grids. In particular, each of the two grids should maximize the solid angle around the (expected)
damaged region to make the best use of a fixed number of experimental measurements. In this
vein, the testing configuration adopted in the present study is shown in Fig. 4b, consisting of five
dual-purpose (source/observation) segments Spiezo

k , k = 1, 5 and 22 “pure” observation segments
Sobs

j , j = 1, 22. For the kth source location, the induced elastodynamic wavefield is monitored
over 66 LDV scan points distributed over the left, upper, and right edge of the plate. Here the
measurements from scan points 1–4, 63–66, and the points belonging to Spiezo

k are used to impose
the Dirichlet data on SD = Spiezo

k � S legs, while the remainder are deployed to provide the sensory
data u

obs on
Sobs = (�22

j=1S
obs
j ) � (�5

l=1S
piezo

l ), l �= k,

where each segment Sobs
j serves as a 2-scan-point motion sensor depicted in Fig. 3c. In the

experiment, the piezoceramic source transducer is first placed at Spiezo

1 to illuminate the damaged
area “from the left”; the LDV motion sensing is then performed at 66 scan points distributed over
the left, upper, and right edge of the plate. The data thus obtained (uobs) are then used to compute
the free and adjoint elastodynamic states [u, �[u]] and [û, �[û]], whose bilinear form (12) gives
the a�liated TS distribution. The source transducer is then moved to the second location Spiezo

2 ,
for which the testing and computational procedure are performed anew. In total, five source
locations were used, resulting in five respective TS maps. In what follows, the superposition of
these individual TS distributions is used as a tool to highlight the e�ect of source aperture on the
quality of TS reconstruction. To facilitate the discussion, the set of excitation sources that is used
to compute any given TS map is denoted by S � {1, 2, 3, 4, 5}.
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In the context of Remark 7, one may observe from Fig. 9 that the obstacle illumunaton by a
single incident wave yields no information about the “dark side” of the scatterer thanks to the
fact that the scattererd field vanishes there (to the leading order), see (3.1). Recalling Corollary 5.3
in [22], on the other hand, it is further noted (using the length scale in Fig. 9) that that D would
have to be contained within a ball of radius R� ' 4.49/k ' 0.015 [30] in order to guarantee the
uniqueness of obstacle reconstruction with only a single incident plane wave.

(c) Partial and full source aperture
In what follows, the partial- and full-source-aperture simulations of TS are effected by first
i) integrating (3.4) numerically to obtain (3.3) – as a function of x

o – for given d, and then
ii) integrating the latter result (also numerically) with respect to d over a prescribed subset of ⌦.
In the context of the single-incident-wave example in Fig. 9, it is first of interest to integrate T(x

o
)

with respect to d k⇧ , i.e. with respect to the in-plane angle of incidence ✓ shown in Fig. 9(a). On
denoting for brevity ˘T⇧ =

R
⇧ Td⌦

d

, it can be shown by following the analysis in Section 4(b) that
the contributions of T?, Tc and TII± to ˘T⇧ behave respectively as O(k), O(k↵

) and O(kµ
), where

↵ 6 3/4 and µ 6 3/4 due to the fact that the codimension of catastrophes in the example does not
exceed two. Such reconstruction ability of ˘T⇧ is illustrated in Fig. 10, which plots the evolution
of TS with increasing in-plane aperture. Note that (i) the bright sector of the unit circle in each
panel depicts the source aperture; (ii) the TS distributions are thresholded at 45%; (iii) the bottom
right panel plots ˘T⇧ , and (iv) the full-source-aperture result assumes 80 equidistant plane-wave
direcitons, which approximate the continuum of unit vectors d spanning the unit circle.

In practice, a satisfactory TS reconstruction can be obtained – at least at lower frequencies
– with only a limited number of incident plane waves, see e.g. [18, 31]. To examine this issue,
Fig. 11 plots four “coarse” approximations of ˘T⇧ , computed respectively with 4, 8, 16 and 32Figure 11. Effect of source density on the TS reconstruction of a Dirichlet anomaly with (A, B) = (0, 1): “full” aperture

images obtained with 4 6 N 6 32 incident plane waves.

For completeness, the reconstruction of a Dirichlet obstacle by ˘T⇧ |
(A,B)=(0,1) is compared in

Fig. 12 to that of a Neumann anomaly by ˘T⇧ |
(A,B)=(3/2,�1). Here the left, middle, and right panels

plot respectively ˘T⇧ , thresholded ˘T⇧ , and example near-boundary variation of ˘T⇧ (along the
indicated normal) versus the contribution of T? only. Note that the featured images are obtained
by adopting Algorithm 1, which samples each anomaly with physically-compatible vanishing
obstacle. As can be seen from Fig. 12(e), this leads to an apparent “smearing” in the case of a
Neumann obstacle. In contrast, its image obtained via Algorithm 2, i.e. using ˘T|

(A,B)=(0,1) as a
sampling tool, is given by the negative of Fig. 12(b) – and thus better localized.

To provide the full-source-aperture counterpart of the result in Fig 12(c) – computed at boundary
point x

?
= (0.178, 0.036, 0), Fig. 13 compares the analytical expression (4.25) with a numerical

estimate of ˘T ⌘ ˘T⌦ , obtained by the superposition of 4⇡N�1⇥(3.3) for N=512 incident plane-
wave directions, uniformly distributed over ⌦. For generality, the comparison is made at both
in-plane boundary point x

?
= (0.178, 0.036, 0) (left panel), and its out-of-plane companion x

?
=

(0.114, 0.046, 0.470) (right panel). Irrespective of the boundary point, the numerical result closely
follows (4.25) at both k = 300 and k = 600, showing visibly better agreement in the latter case.

To conclude the study, Algorithm 1 is applied to identify the boundary of a circular hole
(Neumann obstacle) in an aluminum plate from the recent set of elastodynamic experiments [43].
In this case, elastic waves are propagated in a bounded domain shown in Fig. 14(a) and monitored
along its top and side edges. The incident waves are generated by a piezoelectric transducer,
placed sequentially at five locations indicated in the panel, such that the ratio between the
wavelength and the obstacle size is 0.85. Thus, the testing configuration is incompatible with
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the present analysis in several aspects, including (i) dimensionality of the problem, (ii) type of
the governing equation, (iii) geometry of the anomaly-free domain, (iv) probing wavelength, and
(v) source aperture. Nonetheless the reconstruction of a circular hole in panel (c), obtained by
applying Algorithm 1 to the TS distribution [43] shown in panel (b), is rather satisfactory.
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Figure 4. Testing configuration: a) photograph of the damaged plate, and b) boundary conditions
and spatial arrangement of the LDV scan points for five individual source locations (Spiezo

k , k = 1, 5).

3.4. Reconstruction procedure

As shown in a number of previous studies by way of numerical simulations, the performance of
TS-based defect reconstruction is strongly a�ected by the apertures of both source and observation
grids. In particular, each of the two grids should maximize the solid angle around the (expected)
damaged region to make the best use of a fixed number of experimental measurements. In this
vein, the testing configuration adopted in the present study is shown in Fig. 4b, consisting of five
dual-purpose (source/observation) segments Spiezo

k , k = 1, 5 and 22 “pure” observation segments
Sobs

j , j = 1, 22. For the kth source location, the induced elastodynamic wavefield is monitored
over 66 LDV scan points distributed over the left, upper, and right edge of the plate. Here the
measurements from scan points 1–4, 63–66, and the points belonging to Spiezo

k are used to impose
the Dirichlet data on SD = Spiezo

k � S legs, while the remainder are deployed to provide the sensory
data u

obs on
Sobs = (�22

j=1S
obs
j ) � (�5

l=1S
piezo

l ), l �= k,

where each segment Sobs
j serves as a 2-scan-point motion sensor depicted in Fig. 3c. In the

experiment, the piezoceramic source transducer is first placed at Spiezo

1 to illuminate the damaged
area “from the left”; the LDV motion sensing is then performed at 66 scan points distributed over
the left, upper, and right edge of the plate. The data thus obtained (uobs) are then used to compute
the free and adjoint elastodynamic states [u, �[u]] and [û, �[û]], whose bilinear form (12) gives
the a�liated TS distribution. The source transducer is then moved to the second location Spiezo

2 ,
for which the testing and computational procedure are performed anew. In total, five source
locations were used, resulting in five respective TS maps. In what follows, the superposition of
these individual TS distributions is used as a tool to highlight the e�ect of source aperture on the
quality of TS reconstruction. To facilitate the discussion, the set of excitation sources that is used
to compute any given TS map is denoted by S � {1, 2, 3, 4, 5}.

S

source

�obs

(a)

Figure 14. Elastodynamic experiment in [43]: (a) testing setup, (b) five-sources TS field, and (c) true boundary (dashed

circle) versus its reconstruction (solid irregular line) obtained via Algorithm 1.

6. Summary
In this work, it is shown why the topological sensitivity (TS) may work as a non-iterative tool
for the waveform tomography of finite-sized anomalies in the short wavelength regime. The
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analysis confirms previous numerical and experimental findings to this effect, that have so far
eluded rigorous justification. To establish the claim, it is assumed that anomaly is convex and
impenetrable, and that the sensory data are of the far-field type. Making use of the multipole
expansion and Kirchhoff approximation, the TS indicator function is first expressed as a surface
Fourier integral over the illuminated part of obstacle’s boundary. Under the high-wavenumber
hypothesis, the latter is pruned to three asymptotic essentials, namely i) the near-boundary
approximation for sampling points within few wavelengths from the illuminated surface of
an anomaly; ii) diffraction catastrophes (of codimension < 4) for sampling points near caustic
surfaces, lines, and points; and iii) stationary phase approximation in the remainder of the
sampled region. In the case of the full source aperture, it is shown via catastrophe theory that
the TS is asymptotically dominated by the explicit near-boundary term. This unveils the new
reconstruction logic at short wavelengths, where the anomaly’s boundary is obtained as a zero
level set of the TS field separating its extreme negative and extreme positive values while its
character – if unknown beforehand – is exposed from the sign of the near-boundary variation.
The analysis inherently lends itself to the treatment of diffraction catastrophes with higher
codimension (> 4) for which uniform approximation may become available. However, extensions
of the study to penetrable, non-convex, or multiple scatterers remain open question due to lack of
explicit (Kirchhoff-type) approximations for the scattered field on the boundary of such obstacles.
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A. Hessian of the phase function

(a) Determinant of the Hessian matrix
At the stationary points of ⇣ ·d± r, one finds via (3.11) and (3.9) its Hessian to read

Apq(⇣) = ± 1
r


@⇣

@⌘p · @⇣
@⌘q �

⇣
d· @⇣

@⌘p

⌘⇣
d· @⇣

@⌘q

⌘�
+

(
0, ⇣ = ⇣

±
I

�2|d·n|n· @2⇣
@⌘p@⌘q , ⇣ = ⇣

±
II

, (A 1)

where r= |⇣�x

o|> 0. On selecting the curvilinear coordinates (⌘1, ⌘2) so that their tangents
coincide with the principal directions ap (p=1, 2) of S f at the stationary point, (A 1) reduces to

Apq(⇣) = ± 1
r

h
gpq �p

gppgqq (d·ap) (d·aq)
i
+

(
0, ⇣ = ⇣

±
I

2|d·n| gpq

⇢p
, ⇣ = ⇣

±
II

(no sum), (A 2)

where n is the unit outward normal on S f; ⇢1 > ⇢2 > 0 denote the principal radii of curvature
of S f; gpq are the components of the (diagonal) first fundamental form, and bpq stand for the
second fundamental form. From (A 2) and the first of (3.13), one finds that

det(Apq) = det gpq
(d·n)2

r2
> 0, sgn(Apq) =±2, ⇣ = ⇣

±
I , x

o2 I±, (A 3)

where the signature of the Hessian matrix, sgn(Apq), equals the difference between the number of
positive and negative eigenvalues of Apq . The strict positivity of det(Apq) in (A 3) demonstrates
that the stationary-phase approximation (3.8) is valid for all sampling points xo /2N✏ along the I±

loci. The situation along the II± loci is, however, more complicated since

det(Apq) =
4(d·n)2

⇢1⇢2 r2
det gpq

2Y

j=1

(r ± rj)R 0, sgn(Apq)2 {�2, 0, 2}, ⇣ = ⇣

±
II , x

o2 II±,

(A 4)
where

r1/2 =
1

4|d·n|

h
h±

q
h2� 4(d·n)2⇢1⇢2

i
, h = ⇢1(1�(d·a1)

2) + ⇢2(1�(d·a2)
2). (A 5)

Assuming x

o /2N✏, (A 3) and (A 4) demonstrate that the stationary-phase approximation (3.8)
holds for all sampling points along ray II+, and those along ray II� whose distance to the
stationary point, r=|xo�⇣

�|, is sufficiently separated from the caustic values (A 5).

(b) Nature of the roots r1 and r2

In light of the facts that 0<⇢2 6 ⇢1 and (d·n)2= 1� (d·a1)
2� (d·a2)

2, one finds that the
discriminant in (A 5) is, for any given triplet {⇢1, ⇢2,d·a1}, a monotonically decreasing function
of (d·n)2. Accordingly, the latter is (given d·a1) minimized by setting d·a2=0, in which case

h2 � 4(d·n)2⇢1⇢2 =
�
⇢1(d·n)2� ⇢2

�2
(

= 0, d·a2= 0 and |d·n|2= ⇢2/⇢1

> 0, otherwise
. (A 6)

As a result, the roots r1 and r2 are real-valued, positive, and distinct unless d·a2 = 0 and |d·n|2=
⇢2/⇢1 (in which case r1= r2=

p
⇢1⇢2/2). From (A 5), it is also seen that for fixed {⇢1, ⇢2,d·n},

h is a monotonically decreasing function of (d·a1)
2. Accordingly the lower (r`

j ) and upper (ru
j )

bounds on r1/2 can be obtained from (A 5) by setting (d·a1)
2 to either zero or 1�(d·n)2; in

particular, one finds that

r`
2 =

⇢2

2
|d·n|

ru
1 =

⇢1

2|d·n|

, ru
2 =

8
><

>:

⇢1

2
|d·n|, |d·n|6

q
⇢2
⇢1

⇢2

2|d·n| , otherwise
, r`

1 =

8
><

>:

⇢2

2|d·n| , |d·n|6
q

⇢2
⇢1

⇢1

2
|d·n| otherwise

, (A 7)
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where r`
1 is obtained by substituting the upper bound on r2 into identity r1 r2 = ⇢1 ⇢2/4. The

above result is illustrated in Fig. 15 via the polar plots of r`
2, r

u
2 , r

`
1 and ru

1 for the example ratio
⇢2/⇢1 = 0.7. For completeness it can be also shown that, consistent with Fig. 15,

lim
|d·n|!0

r1 =
⇢1�(⇢1�⇢2)(d·a1)

2

2|d·n| , lim
|d·n|!0

r2 =
1
2⇢1⇢2 |d·n|

⇢1�(⇢1�⇢2)(d·a1)2
, lim

|d·n|!1
rk =

⇢k

2
.
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Figure 15. Upper and lower bounds on the caustic distances r1 and r2 along ray II�, computed for ⇢2/⇢1 = 0.7.

(c) Behavior of the Hessian for near-caustic sampling points
For the purposes of this study, it is instructive to examine the limiting behavior of (A 2) for
sampling points xo2 II� such that r= |xo�⇣

�
II |= rk+ ✏, ✏! 0.

Case d·a1 = 0 (⇣=⇣

�
II ). For this configuration, one finds from (A 2) and (A 5) that the mixed

derivative vanishes at the stationary point (i.e. A12 =A21 = 0) for any r > 0, while

A11
✏2= g11

4|d·n|2

⇢2
1

✏, A22
✏= 2g22

✓
|d·n|
⇢2

� |d·n|3

⇢1

◆
, r= r1 + ✏,

A22
✏2=

4g22
⇢2
2

✏, A11
✏=

2g11
|d·n|

✓
|d·n|2

⇢1
� 1

⇢2

◆
, r= r2 + ✏,

(A 8)

when ✏! 0. From (A 8) it is clear that the corank of the Hessian matrix (A 2) equals one in the
limit as r! r1/2, except when |d·n|2 = ⇢2/⇢1 = 1.

Case d·a2 = 0 (⇣=⇣

�
II ). In this situation, one again finds that A12 =A21 = 0 for any r > 0. On

the other hand, it follows from (A 2) and (A 5) that

A11
✏2=

4g11
⇢2
1

✏, A22
✏=

2g22
|d·n|

✓
|d·n|2

⇢2
� 1

⇢1

◆
,

(
r= r1 + ✏, ⇢2

⇢1
< |d·n|2

r= r2 + ✏, ⇢2
⇢1

> |d·n|2

A22
✏2=

4g22|d·n|2

⇢2
2

✏, A11
✏= 2g11

✓
|d·n|
⇢1

� |d·n|3

⇢2

◆
,

(
r= r1 + ✏, ⇢2

⇢1
> |d·n|2

r= r2 + ✏, ⇢2
⇢1

< |d·n|2

(A 9)

when ✏! 0. For sampling points xo along ray II�, (A 9) accordingly demonstrates that the corank
of (A 2) equals one in the limit as r! r1/2, except when |d·n|2 = ⇢2/⇢1.
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Case (d·a1)(d·a2) 6= 0 (⇣=⇣

�
II ). For this class of configurations, r1 6= r2 due to (A 5) and (A 6).

As a result the corank of the Hessian matrix (A 2) at ⇣=⇣

�
II equals one, regardless of d·n, as

r! r1/2. Next, assume r= rj+✏ where ✏! 0 and j=1, 2. Thanks to the Splitting Lemma [P1],
for each j there exists a local diffeomorphism (⌘1, ⌘2)! (#1,#2) under which the phase
function (3.20) is approximated by the second of (3.23). In this case one has A#1#2 =A#2#1 = 0

and, owing to the invariance of (A 4) with respect to the choice of local coordinates,

A#1#1 =O(1), A#2#2 =O(✏), r= rj + ✏, ✏! 0. (A 10)

Note that (A 8)–(A 10) apply to catastrophes of any codimension. Along given ray II� the
codimension of the caustic as r! rj , if exceeding one, is inherently governed by the limiting
behavior of higher-order derivatives of ⇣ ·d� r, i.e. the derivatives of Apq , in that neighborhood.
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B. Asymptotic expansion in the caustic region
For completeness, this section summarizes the asymptotic evaluation of a two-dimensional
Fourier integral (3.7) in situations when the phase function �= ⇣ ·d� r is affiliated with any of
the diffraction catastrophes listed in Table 2. The analysis implicitly makes use of the Van der
Corput neutralizers [Q3, Q4] that are described at the end of the section.

(a) Hessian matrix of corank one
With the caveat of two degenerate configurations discussed in Appendix A(c), the corank of the
Hessian of (3.20) within the bifurcation set (3.21) equals one which allows for the separation of �
into a non-degenerate Morse piece and a single-argument degenerate part according to the second
of (3.23). In this setting (3.7) can be first integrated along the non-degenerate direction #1, thereby
allowing the contribution of nearby (or coalescing) stationary points to be investigated in the
context of a one-dimensional integral

k�
1
2

Z1

�1
F (#) eik (#) d#, #= #2,  (#) = (⇣ ·d� r)|

#

1=0, (B 1)

where

F (#) =

p
2⇡ ei�⇡/4 f(⇣)|

#

1=0p
|@2�/@(#1)2|

#

1=0

⇥ dS
⌘

dS
#

����
#

1=0
, � = sign

✓
@2�

@(#1)2

◆����
#

1=0
. (B 2)

Following Table 2, the codimension of the phase function is assumed not to exceed three, which
in the context of (B 1) allows for structurally-stable caustics that are of either type fold, cusp or
swallowtail [Q2] depending on the geometry of S f in the neighborhood of ⇣�II .

One particular phenomenon that is common to all caustics, as elucidated by the catastrophe
theory, is a dramatic shift in the character of the phase function due to smooth variation of its
parameters. This may be interpreted as the suppression of propagating waves across the caustic:
on the so-called bright side [Q13] of the bifurcation set B

�

, the diffraction pattern is formed by
propagating waves stemming from the interaction of real-valued stationary points; however as
x

o moves across B
�

into the dark side of the caustic, at least one pair of the interacting stationary
points become complex conjugate, leading to a diffraction pattern that is formed (at least in
part) by evanescent waves. Due to the fact that the ensuing asymptotic models apply uniformly
throughout the neighborhood of B

�

(and beyond), however, the remainder of this section makes
little distinction between its bright and dark regions.

The procedure for developing uniform asymptotic approximation for a given type of diffraction
catastrophe was first proposed in [Q7], and entails the following three steps. First, the degeneracy
of the phase function is categorized, in terms of the topology of its stationary points, as a
particular type of universal unfolding according to Thom’s classification theorem. Second, a
diffeomorphism is specified that maps the given phase function into a normal form representing
the featured class of caustics. In particular, parameters of the so-called (minimal) control space,
given by the coefficients of the normal form, are computed by solving a set of nonlinear
equations. Third, depending upon the type of the caustic, a suitable expansion of the non-
exponential part of the integrand is introduced – by which one arrives at the sought asymptotic
approximation of an oscillatory integral. Here one should note that in the immediate vicinity
of the bifurcation set B

�

(where stationary points coalesce), the uniform approximation breaks
down. In this case the required mapping is computed stably, albeit locally, via Taylor series
expansion of both the phase function and sought diffeomorphism, leading to the so-called
transitional asymptotic approximation. A comprehensive asymptotic analysis of the fold and cusp
diffraction catastrophes (both in terms of uniform and transitional approximations) can be found
in [Q13], while the uniform asymptotic approximation of the swallowtail catastrophe is obtained
in [Q10]. To facilitate the main presentation, the remainder of this section summarizes the
uniform asymptotic treatment of the fold, cusp, and swallowtail catastrophes. Their transitional



5

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

counterparts retain the same functional form, except that the germane control parameters and
coefficients of approximation are computed locally.

Fold catastrophe. This type of caustics is affiliated with two coalescing stationary points that,
on the dark side B

�

, become complex conjugate. The local behavior of the phase function around
the “halfway” inflection point  (2)(0) = 0 follows, up to a diffeomorphism, the fold normal form
t3/3 + c t. Following the aforementioned procedure, uniform asymptotic approximation of the
one-dimensional integral (B 1) due to fold-type degeneracy of the phase function can be computed
as

k�1/2
Z1

�1
F (#)eik (#) d# = eik o

h
k�5/6f1Ai(�ck

2
3 ) + k�7/6f2Ai0(�ck

2
3 )
i
+ O(k�3/2),

(B 3)
in terms of the Airy function and its derivative

Ai(b) =
1
2⇡

Z1

�1
ei(⌧3

/3+ b ⌧) d⌧, Ai0 =
dAi
db

, (B 4)

see e.g. [Q4]. Through a diffeomorphism #! t= k�1/3⌧ transforming  (#) into t3/3 + c t+  o,
the control parameter c and phase offset can be computed explicitly as

c =
⇥ 3
4 ( (#2)�  (#1))

⇤2/3
,  o = 1

2

⇥
 (#1) +  (#2)

⇤
,

where #1 and #2 are the adjacent stationary points of  (#), arranged so that  (#2)> (#1). The
remaining quantities in (B 3) are the coefficients of the expansion given by

f1 = ⇡ g+ f2 = � i⇡p
c
g�, g± = F (#1)

⇥
2
p
c/ (2)(#1)

⇤1/2 ± F (#2)
⇥
�2

p
c/ (2)(#2)

⇤1/2
.

As #1 and #2 move apart, uniform approximation (B 3) reduces to the sum of the contributions
of two isolated stationary points. It is also worth mentioning that the featured asymptotic
model remains valid on the dark side of B

�

provided that c is replaced by |c|ei⇡ , where |c|=
( 3
4 Im[ (#1)�  (#2)])

2/3. Further details on (B 3), along with a full account of the transitional
approximation, can be found in [Q13].

Cusp catastrophe. In diffraction terms, this type of degeneracy occurs at the point contact of two
fold caustics, and is characterized by three coalescing stationary points as the sampling point xo

approaches B
�

from the bright side. Specifically, the cusp catastrophe is the universal unfolding
of germ t4 with codimension two and normal form t4 + c2 t

2 + c1 t. Assuming  (3)(0)=0 and
 (4)(0)>0, uniform asymptotic approximation of (B 1) in the cusp region is given by

k�1/2
Z1

�1
F (#)eik (#) d# = eik o

2X

m=0

k�(3+m)/4 f
m

P
,m

(c1k
3
4 , c2k

1
2 ) + O(k�3/2), (B 5)

in terms of the Pearcey function and its derivatives

P (b1, b2) =

Z1

�1
ei(⌧4 + b2⌧

2 + b1⌧) d⌧, P
,0 = P, P

,m

=
1
i
@P
@b

m

(m=1, 2),

see for instance [Q13]. Through an implicit diffeomorphism #! t= k�1/4⌧ , the phase function
 (#) is mapped onto t4 + c2 t

2 + c1 t+  o. Accordingly, the control parameters (c1, c2) and phase
offset  o featured in (B 5) can be computed by solving the set of nonlinear equations enforcing
one-to-one correspondence between the stationary points in the # and t spaces, namely

 o + c1 tm + c2 t
2
m

+ t4
m

=  (#
m

), m= 1, 2, 3

where the stationary points of  (#) are denoted by #
m

, and their counterparts in the t-space are
t
m

which satisfy 4 t3
m

+ 2c2tm + c1 = 0. The coefficients f
m

of the uniform expansion (B 5) are
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obtained by solving

f0 + f1 tm + f2 t
2
m

= F (#
m

)
d#
dt

����
t=tm

,
d#
dt

����
t=tm

=


12 t2

m

+ 2c2
 (2)(#

m

)

�1/2

, m= 1, 2, 3.

The transitional Pearcey approximation, that applies in the immediate vicinity of the cusp caustic,
can be found in [Q13]. Note that the above analysis applies equally to the bright and dark side
of B

�

, the key difference being that the triplets #
m

and t
m

are each comprised of one real and
two (complex-conjugate) roots in the latter case. In situations where  (4)(0)<0, the problem is
resolved by applying (B 5) to the complex conjugate of (B 1).

Swallowtail catastrophe. In this case that is affiliated with four (real or complex) stationary
points, two cusped edges, known as ribs, meet at a point. This type of catastrophe is classified as
the universal unfolding of germ t5 with codimension three and normal form t5 + c3 t

3 + c2 t
2 +

c1 t. The uniform asymptotic approximation of the diffraction integral (B 1) endowed with this
type of caustics can be written as

k�1/2
Z1

�1
F (#)eik (#) d# = eik o

3X

m=0

k�(7+2m)/10 f
m

S
,m

(c1k
4
5 , c2k

3
5 , c3k

2
5 ) + O(k�3/2),

(B 6)
in terms of the swallowtail function and its derivatives

S (b1, b2, b3) =

Z1

�1
ei(⌧5 + b3⌧

3 + b2⌧
2 + b1⌧) d⌧, S

,0 = S, S
,m

=
1
i
@S
@b

m

(m= 1, 2, 3)

see [Q9]. By invoking the same strategy as in the cusp case, the control parameters (c1, c2, c3) and
phase offset  � are obtained by solving the system of nonlinear equations

 o + c1 tm + c2 t
2
m

+ c3 t
3
m

+ t5
m

=  (#
m

), m= 1, 2, 3, 4,

where #
m

are the stationary points of  (#), and t
m

are their counterparts in the t-space satisfying
5 t4

m

+ 3c3t
2
m

+ 2c2 tm + c1 = 0. The remaining coefficients in (B 6) are determined from the
linear set of equations

f0 + f1tm + f2t
2
m

+ f3t
3
m

= F (#
m

)


20 t3

m

+ 6c3tm + 2c2
 (2)(#

m

)

�1/2

, m= 1, 2, 3, 4,

In the immediate vicinity of B
�

(where two or more stationary points coalesce), the above solution
breaks down and is replaced by the transitional approximation, see [Q9, Q10].

(b) Hessian matrix of corank two
From the results in Appendix A(c), one finds that the rank of the Hessian matrix (A 1) vanishes
only for two nested degenerate configurations, namely i) d·a2 = 0 and |d·n|2 = ⇢2/⇢1<1, and
ii) |d·n|2 = ⇢2/⇢1 = 1. In both cases, the corank-two degeneracy occurs for sampling points where

r= |xo� ⇣

�
II | ! r1, r1 = r2 =

1
2 ⇢1|d·n|, x

o 2 II�.

To identify the class of catastrophes describing each case, it is necessary to expose the germ of the
phase function �= ⇣ · d� r in (3.7), characterizing its behavior when all nearby stationary points
coalesce [Q2] as r! r1. To this end, consider first the third-order expansion of �(⌘1, ⌘2) for the
case when ⇢2/⇢1 < 1. Assuming the principal curvatures ⇢1 and ⇢2 to be locally constant, (3.20)
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can be expanded in Taylor series as

�(⌘1, ⌘2) ' �o +
d·a1

⇢1

h g11
⇢1

(⌘1)3 +
g22
⇢2

⌘1(⌘2)2
i
(g11)

1/2, ⇢2/⇢1 < 1, (B 7)

where �o = �(⇣�II ). On introducing the linear mapping (⌘1, ⌘2)! (s, t) by way of

⌘1 =
1

p
g11

⇣4 d·a1

⇢1
2

⌘� 1
3
(t + s), ⌘2 =

|d·n|
p
3

p
g22

⇣4 d·a1

⇢1
2

⌘� 1
3
(t � s), (B 8)

one obtains (up to a constant) the normal cubic form s3 + t3 of the phase function at r= r1
which is of codimension three [Q6]. This particular germ corresponds to the hyperbolic umbilic
catastrophe listed in Table 2, and is geometrically described by a cusp line touching a fold
surface at the focus. In this case there are four interacting (real or complex) stationary points
whose coalescence entails three control parameters (c1, c2, c3), and their topology is such that
the phase function can be transformed, in the neighborhood of r= r1, into the normal form
s3 + t3 + c3 st+ c2 t+ c1s via a diffeomorphism. The uniform asymptotic approximation of (3.7)
due to this type of diffraction catastrophe [Q8] can be computed as

Z

S

f
f(⇣) eik�(⌘1

,⌘

2) dS
⌘

= eik�o
2X

m=0

k�(2+m)/3f
m

H
,m

(c1k
2
3 , c2k

2
3 , c3k

1
3 ) + O(k�5/3), (B 9)

in terms of the hyperbolic-umbilic canonical integral and its derivatives

H(b1, b2, b3) =

Z1

�1

Z1

�1
ei(�3 + ⌧

3 + b3� ⌧ + b2⌧ + b1�) d� d⌧,

H
,0 = H, H

,1 =
1
i

2X

j=1

↵
j

@H
@b

j

, H
,2 =

1
i
@H
@b3

.

The procedure for computing the control parameters (c1, c2, c3) follows the same logic as that
outlined in the previous section and entails transforming �(⌘1, ⌘2) to the hyperbolic-umbilic
normal form, see [Q8, Q12] for details. Further, the coefficients f0, f1↵1, f1↵2 and f2 in (B 9) are
obtained [Q14] by expanding the non-exponential part of the integrand as

f(⇣)
dS

⌘

dsdt
' f0 + f1(↵1s+ ↵2t) + f2 st, ⇣ = ⇣(⌘1, ⌘2). (B 10)

As examined earlier, the remaining configuration from Appendix A(c) resulting in a corank-
two Hessian of the phase function is given by |d · n|2 = ⇢2/⇢1 = 1 and r= r1 = r2. In this case,
the apex of S f is also an umbilic point of the exposed boundary, and the third-order derivatives
in (B 7) uniformly vanish. Accordingly, the class of caustics involved in this case is at least of
codimension four, i.e. cod(�)> 4 which is beyond the scope of present investigation.

For completeness the reader is reminded that depending on the shape of S f, the corank-two
Hessian of the phase function may further be affiliated with “global” caustics, which involve
third- and higher-order surface properties – and thus (possibly) additional types of degeneracy.
Within the framework of this study which is limited to cod(�)6 3, the only remaining class of
catastrophes meeting this requirement is that of the elliptic umbilic, see Table 2. In this case, the
leading asymptotic behavior of the diffraction integral is O(k�2/3) [Q1], i.e. the same as that for
the hyperbolic umbilic catastrophe.

As an illustration, example behavior of the canonical integrals featured in this section is plotted
in Fig. 16, including their large-argument asymptotics as applicable.
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Figure 16. Elements of diffraction patterns (dashed lines) in the normalized control space b along with their large-

argument asymptotic expansion (solid grey lines) for catastrophes of codimension less than four: fold, cusp, swallowtail,

hyperbolic umbilic, end elliptic umbilic (left-to-right, top-to-bottom).

(c) Neutralizer functions
For generic F and  , the contribution of a given set of coalescing stationary points of  to the
one-dimensional integral in (B 1) is evaluated via the partition of unity, namely

1 =
X

j

g
j

(#) + g̃(#) ) F (#) =
X

j

F
j

(#) + F̃ (#), #2R,

where F
j

=Fg
j

, and g
j

(called the Van der Corput neutralizers) isolate the individual clusters
of interacting stationary points. Assuming that the given cluster is enclosed by g

m

, the sought
contribution is accordingly computed as

k�
1
2

Z1

�1
F

m

(#) eik (#) d#. (B 11)

As examined for instance in [Q3], g
j

are designed to: i) be infinitely differentiable, ii) equal unity
over the support of germane (stationary point) interaction, and iii) vanish over the support of
the remaining clusters. One example of a function meeting these requirements [Q4] is given by
g(#) = h(#)h(�#)/h2

0, where

h(x) =

Z1

x

e(� � s)e(s� ✏)ds, e(s) =

(
0, s6 0

e�1/s, s > 0
, 0< ✏< �

and

h0 =

Z
�

✏

e(� � s)e(s� ✏)ds.

In particular, it is trivial to show that such infinitely differentiable function equals unity (resp.
zero) for |#|< ✏ (resp. |#|> �).

Note that the concept of neutralizer functions extends naturally to surface (and in general
higher-dimensional) integrals, see e.g. [Q5].
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C. Existence and uniqueness of the stationary point ⇣+
II

Consider a convex domain D⇢ R3 bounded by a smooth closed surface S = @D. As examined
e.g. in [R1], for each x2 R3\D there exists a unique normal projection on S, x⇤, such that

\
x

⇤� x = � n(x⇤), x

⇤ 2 S. (C 1)

Next, consider the perturbation of x by dx as shown in Fig. 17, where

dTx = dx� (dx·n)n(x⇤)

signifies the “tangential” component of dx that is perpendicular to n. Letting further dx⇤?n

denote the perturbation of the affiliated projection point, one finds that

dn = n(x⇤+ dx⇤)� n(x⇤) = ↵ (dTx� dx⇤), (C 2)

where ↵> 0 is the scaling coefficient dependent on distance |x⇤� x|. With reference to the
orthonormal basis (a1,a2,n) where a1 and a2 are the principal directions of S at x

⇤, the
formulae of Rodrigues [R2] demonstrate that for a convex domain

dn = ⇢�1
1 (dx⇤ ·a1)a1 + ⇢�1

2 (dx⇤ ·a2)a2, (C 3)

where ⇢1 and ⇢2 denote the principal radii of curvature. On contracting the difference
between (C 2) and (C 3) by ap (p=1, 2) one finds that

dx⇤ ·ap =
↵⇢p

1 + ↵⇢p
(dTx·ap), =) dx⇤ ·dx =

2X

p=1

↵⇢p

1 + ↵⇢p
(dTx·ap)

2 > 0, (C 4)

as long as dx ,n. Here it is also noted that

dr = 1
2 rdn·dn + dx·n > 0 when dx·n> 0, r= |x⇤� x|. (C 5)

23

signifies the “tangential” component of dx that is perpendicular to n. Letting further d⇣x� n denote the
perturbation of the a�liated projection point, one finds that

dn = n(⇣x + d⇣x) � n(⇣x) = � (dTx � d⇣x), (C.2) uni1

where � > 0 is the scaling coe�cient dependent on distance |⇣x�x|. With reference to the orthonormal basis
(a1(⇣

x), a2(⇣
x), n(⇣x)) where a1 and a2 denote the principal directions of S, the formulae of Rodrigues [29]

demostrate that for a convex domain

dn =
1

�1
(d⇣x ·a1)a1 +

1

�2
(d⇣x ·a2)a2 (C.3) uni2

to the leading order, where �1 >0 and �2 >0 denote the radii of the principal curvatures at ⇣x. On contracting
the di�erence between (C.2) and (C.3) by ap (p=1, 2) one finds that

d⇣x ·ap =
��p

1 + ��p
(dTx·ap), p = 1, 2 =� d⇣x ·dx =

2�

p=1

��p

1 + ��p
(dTx·ap)

2 > 0, (C.4) uni3

as long as dx , n. Here it is also noted that

dr =
r

2
dn·dn + dx·n > 0 when dx·n > 0, r = |⇣x� x|. (C.5) uni4

x

x+dx

dTx

n(⇣x)

n(⇣x+d⇣x)

d⇣x

S

Figure C1. Perturbation of the normal projection, ⇣

x, on S.unique

prop1 Proposition Appendix C.1 For each sampling point xo � B1\(L̄ +�L ��N�) where L ± are open “half”
cylinders defined in (31) and N� is given by (24), there exists a unique stationary point ⇣+

II � S f given
by (30b).

Proof. With reference to Fig. C2, consider the line L parallel to d passing through xo, and let x� be the
reference point on this line such that ⇣x�

� d, where ⇣x�

is the normal projection of x� on S as in (C.1). In
this setting, it is instructive to examine the set of trial points x � L “above” x� specified by

x � Lf, Lf = {y : y = x� + �(�d), � > 0}.

In light of the earlier discussion, for any x � Lf there exists a unique normal projection ⇣x � Sf. In general,
vectors ⇣x� x are not coplanar when x � Lf. On taking dx = d�(�d) and recalling that n·d < 0 on Sf, one
finds from (C.6) that r = |⇣x� x| increases monotonically with � > 0. From Fig. C2, it is also seen that for
each x � Lf there is a unique “trailing” point, x0 � L, with coordinates

x0 = x � r

2|n·d| (�d) := x� + �0(�d), �0 = (⇣x� ⇣x�

)·(�d) + r
�
|n·d| � 1

2|n·d|

�
. (C.6) uni4

The key feature of x0 is that the normal projection of x on Sf, ⇣x, is the stationary point of type ⇣+
II for the

integrals in (25) when the sampling point xo coincides with x0. Taking dx = d�(�d) as before, it follows

n(x⇤)

n(x⇤+ dx⇤)

dx⇤

Figure 17. Perturbation of the normal projection, x

⇤
, of x 2 R3\D on S.

Proposition C.1. For each sampling point xo2 R3\L̄ ± where L ±(d) are open “half” cylinders
defined in (3.12), there exists a unique stationary point ⇣

+
II 2 S f given by the second of (3.11).

Proof. With reference to Fig. 18, consider the line L parallel to d passing through x

o, and let z be
the reference point on this line such that (z� z

⇤)? d, where z

⇤ is the normal projection of z on S

according to (C 1). In this setting, it is instructive to examine the set of trial points x2L “above”
z specified by

x2Lf, Lf = {⇠: ⇠= z + �(�d), �> 0}.

In light of the earlier discussion, for any x2Lf there exists a unique normal projection x

⇤ 2 S f. In
general, vectors x

⇤� x are not coplanar when x2Lf. On taking dx= d�(�d) and recalling that
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n·d< 0 on S f, one finds from (C 6) that r= |x⇤� x| increases monotonically with �> 0. From
Fig. 18, it is also seen that 8x2Lf there is a unique “trailing” point, x0 2L, with coordinates

x

0 = x� r
2|n·d| (�d) = z + �0(�d), �0 = (x⇤� z

⇤)·(�d) + r
⇣
|n·d|� 1

2|n·d|

⌘
, (C 6)

where n=n(x⇤). The key feature of x

0 is that the normal projection of x on S f, x

⇤, is the
stationary point of type ⇣

+
II for the integrals in (3.6) when the sampling point x

o coincides
with x

0. Taking dx= d�(�d) as before, it follows from (C 4) that the product (x⇤� z

⇤)·(�d)

increases monotonically with �> 0. By virtue of the latter equality, one also finds that |n·d|
steadily traverses the interval (0, 1) with increasing �2(0,1). As a result, �0(�) is a monotonically

increasing function that maps (0,1) onto (�1,1). On denoting the �0 coordinate of the given
sampling point xo2L by �0

o T 0, it follows that there exists a unique value �o > 0, specified by
the equality �0(�o) = �0

o, such that ⇣

+
II =x

⇤2 S f for x= z + �o(�d).

24

from (C.4) that the product (⇣x � ⇣x�

) ·(�d) increases monotoniclally with � > 0. By vitue of the latter
equality, one also finds that |n·d| steadily traverses the interval (0, 1) with increasing ��(0, �). As a result,
�0(�) is a monotonically increasing function that maps (0, �) onto (��, �). On denoting the �0 coordinate

of the given sampling point xo � L by �0
o T 0, it follows that there exists a unique value �o > 0, specified

by the equality �0(�o) = �0
o, such that ⇣+

II = ⇣x � Sf for x = x� + �o(�d).

�

x

x�

r/2|n·d| r
r |n·d|

d

(⇣x� ⇣x�

)·(�d)

⇣x
S f

xo

x� �=0

Figure C2. Geometric platform for the identification of stationary point ⇣

+
II 2 Sf a�liated with x

o.exi

Proposition Appendix C.2 For each sampling point xo � L � where L � is an open “half” cylinder
defined in (31), there exists a unique stationary point ⇣+

II � S f given by (30b).

Proof. The proof of this claim follows that of Proposition Appendix C.1 and is omitted for brevity. The
only notable di�erences are that: i) the reference point x� is taken as the projection of xo along d on Sf,
and ii) the function �0(�), which is again monotonically increasing, maps (0, �) onto itself.

Proposition Appendix C.3 For any xo � L + where L + is an open “half” cylinder defined in (31), there
are no stationary points stationary point ⇣+

II � S f given by (30b).

Proof. This claim is a direct consequence of the facts that D is convex and that every locus II+ emanating
from ⇣ � Sf is oriented toward the exterior of D, see Fig. 2.

(x⇤� z⇤)·(�d)

x⇤

z⇤z

Figure 18. Geometrical platform for the identification of stationary point ⇣

+
II

2 S f

affiliated with x

o

.

Proposition C.2. For each sampling point xo2 L̄ �\S f where L �(d) is an open “half” cylinder
defined in (3.12), there exists a unique stationary point ⇣

+
II 2 S f(d) given by the second of (3.11).

Proof. The proof of this claim follows that of Proposition C.1 and is omitted for brevity. The only
notable differences are that: i) the reference point z is taken as the projection of xo along d on S f,
and ii) the function �0(�), which is again monotonically increasing, maps (0,1) onto itself. For
completeness, it is noted that for xo2 @L �\S f, z is the projection of xo along d on @S f.

Proposition C.3. For any x

o2 L̄ +\S f where L + is an open “half” cylinder defined in (3.12),
there are no stationary points ⇣

+
II 2 S f given by the second of (3.11).

Proof. This claim is a direct consequence of the facts that D is convex and that every ray II+

emanating from ⇣ 2 S f is oriented toward the exterior of D, see Fig. 2.

Remark. For reasons detailed in Section 3(d), the stationary phase approximation (3.17) is
superseded by the near-boundary expansion (3.36) for sampling points close to S f. On the basis
of this observation and Propositions C.1–C.3, one finds that the domain where (3.17) applies is
contained within R3\L̄ +.

References
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D. On the accuracy of Kirchhoff approximation
To examine the ramifications of the Kirchhoff approximation (3.1) and (4.26) on the high-
frequency TS analysis, consider the scattering by a convex Dirichlet obstacle as an example. Next,
adopt the decomposition of obstacle’s boundary S = @D as

S = Sb [ St [ Sds,

where Sb, St, and Sds denote respectively the bright, transitional, and deep shadow region [S1]
schematically shown in Fig. 19. In the context of the present study one has S f ⇢ Sb [ St, where
S f
(d) = {x2 S :n(x)·d< 0} and St is a ring-like neighborhood of @S f of width O(k�1/3

) [S4].
With such premise, (3.1) can be written more precisely as

u = 0, u,n =

(
2ui

,n on S f

0 otherwise

)
+ E on S, (D 1)

were E is the error of the Kirchhoff approximation. While the phase of E is obstacle-geometry-
dependent [S4] and remains an open research question [S1], it can be shown [e.g. S3, S2, S4]
that

ui
,n = �ikd·ne�ik⇠·d on S f

=) E =

8
><

>:

O(1) on Sb

O(k2/3
) on St

O(k2/3
)⇥ exp (��(k)s) on Sds

, (D 2)

for scattering by a smooth Dirichlet obstacle, where s denotes a diffracted surface ray (the so-
called creeping ray) path into the shadow region, and �(k)> 0 describes the amplitude decay of
creeping rays due to tangential shedding of energy into the medium [S5]. By virtue of this result,
E can be shown to have no effect on the claim of Theorem 4.6 as elucidated below.

St = O(k�1/3)

Sds

Sb
x�

d

Figure 19. Schematics of the bright, transitional, and deep shadow regions comprising the surface of a scatterer.

• Contribution of E to

˘T via the boundary of the integration domain. In the foregoing analysis,
the contribution of critical points along the closed curve @S f – the boundary of S f – was
neglected thanks to the fact that ui

,n = 0 there. In the context of (D 1), there is likewise no
“boundary” contribution due to E since the integration must be performed over the entire
(closed) surface S.

• Contribution of E to

˘T via the near-boundary term T?. From the analysis in Section 3(d)ii
and (D 2), it follows that the contribution of E over S to T? is O(k2/3

) in the case of
illumination by a single plane wave. Accordingly the error in evaluating (4.23) and thus (4.25)
due to E is at most O(k2/3

), which preserves the claim of Theorem 4.6.
• Contribution of E to

˘T via non-degenerate stationary points. Thanks to (D 2), one finds that
the contribution of E to T in (4.1) via the stationary points (i.e. the contribution of E to TII±

)

behaves at most as O(k2/3
) in the case of a single incident wave. As as a result, the claim of

Theorem 4.6 remains unaltered by the stationary points of E – even if possible cancellation of
their effect due to full-aperture illumination is altogether ignored.
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• Contribution of E|Sb
to

˘T via diffraction catastrophes. From (4.2) and (D 2), it can be seen
that the single-indcident-wave contribution of E over Sb to Tc in (4.1) is at most O(k1/3

);
accordingly it has no effect on the claim of Theorem 4.6.

• Contribution of E|St
to

˘T via diffraction catastrophes. In contrast to the previous case,
(4.2) and (D 2) demonstrate that the contribution of E over St to Tc may reach O(k), which
warrants further consideration. To this end, it can first be observed that the magnitude
of E-catastrophes over the transitional region scales with wavenumber k as in Table 4.2 –
diminished by a factor of k�1/3. Next, one finds from the Melrose-Taylor corrected Kirchhoff
approximation [S4] underpinning (D 2) that the neglected parts of integrands in (3.6) due to E

contain rapidly-oscillating factors eik�E(⇣) whose phase permits leading-order approximation

�E(⇣) = ⇣ ·d± r � 1
3Z

3
(⇣,d). (D 3)

Here Z is a smooth function that reflects the geometry of a scatterer and vanishes, to the
first order, on @S f where d·n= 0. Continuing upon the full-aperture analysis of diffraction
catastrophes according to Kirchhoff approximation, the discussion is hereon focused on the
phase function in (D 3) with the minus sign before r. In this setting, the developments in
Sec. 4(b)ii can be extended to account for the leading-order correction Z3/3, resulting in the
analogue of (4.19) as

�E(⇣)
��
do+dd ' ˜�E� +

1
2�

(2)
E� �2

+ (dd·ˆs)� +

1
6 �000

E� ⌧
3
+ (dd·ˆt)⌧ � Z2 @Z

@d
·dd, (D 4)

where Z =Z(⇣

⇤
+� ˆ

s+⌧ ˆt,do
) and ˜�E� , �(2)

E� and �000
E� are constants such that �(2)

E� =O(1) and
�000

E� =O(1) under the premise of fold catastrophe at ⇣

⇤2 St when d= d

o. On recalling the
framework of structural stability, the items of interest in (D 4) are the linear and cubic terms
in ⌧ – which permit computation of the sought initial slope VE = |c|/dist(d, BE

�) as d leaves the
bifurcation set BE

� of �E, where c is the featured fold control parameter. Here it is noted, however,
that the last term in (D 4) behaves as

Z(⇣

⇤
+� ˆ

s+⌧ ˆt,do
) 6 O(k�1/3

), ⇣

⇤ 2 St

due to the facts that: i) Z vanishes smoothly to the first order on @S f, and ii) St� @S f is a
ring-shaped surface of width O(k�1/3

). As a result, the contributions of Z2
(@Z/@d)·dd to both

linear and cubic terms in ⌧ are O(k�2/3
), whereby the E-counterpart of (4.20) reduces to

VE >
�� 1
2�

000
E�

���
1
3
�
1 +O(k�2/3

)

�
|do·n| '

�� 1
2�

000
E�

���
1
3 |do·n|, (D 5)

noting that n=n(⇣

⇤
). When ⇣

⇤ 2 St, it is clear from basic geometrical considerations that
|do·n|6O(k�1/3

), see Fig. 19. The question, however, is to determine the lower bound on |do·n|
and thus that on VE. To this end, one can show from (3.10), (3.11) and (D 3) that

⇣

⇤� x

o
= |⇣⇤� x

o|
⇥
d

o
+ 2|do ·n|n(⇣⇤

)

⇤
+O(k�2/3

), ⇣

⇤ 2 St \ S f, (D 6)

which again makes use of the fact that Z(⇣

⇤,do
)6O(k�1/3

) in the transitional region.
Assuming |do ·n(⇣⇤

)|=O(k�↵
) for some 0< ↵< 2/3, (D 6) can be used to show – via tangent-

plane approximation of S at ⇣⇤ – that the distance between x

o and its normal projection on S

behaves as |`|' (⇣

⇤� x

o
)·n(⇣⇤

) =O(k�↵|⇣⇤� x

o|). Under the same hypothesis, one finds that
Z(⇣

⇤
) =O(k�↵

) and consequently, following the developments in Appendix A(a), that

|⇣⇤� x

o| = r2 + O
�
Z(⇣

⇤
)

�
= O(k�↵

) when |do ·n(⇣⇤
)|=O(k�↵

), 0< ↵< 2/3,

where r2 is given by (A5) and behaves asymptotically as r2 =O(|do ·n|) for |do ·n|⌧ 1. In
this setting one finds that for |do ·n|=O(k�↵

), the normal distance from x

o to the boundary
is |`|=O(k�2↵

). As examined in Section 3(d), however, for sampling points with |`|6O(k�1
)

the contribution of nearby critical points on S is universally computed via the near-boundary
approximation (3.36). As a result, one obtains the lower bound |do ·n|>O(k�1/2

) for (D 5),
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whereby the E-analogue of (4.21) reads

| ˜BE
�|cod(�)=1 6 O

�
|do·n|�1 k��min

m
�

= O
�
k1/2 k�2/3�

= O(k�1/6
). (D 7)

On the basis of Table 4.2, (D 2), and (D 8), it immediately follows that the full-aperture
contribution of the fold catastrophes (cod(�E) = 1) of E over St scales, at most, as
O(k7/6k�1/3k�1/6

) =O(k2/3
) which leaves the claim of Theorem 4.6 unaffected. As argued

earlier in Section 4(b)ii, the contribution of higher-order catastrophes in the transitional region
is precluded by the regularity of the scattering surface S.

• Contribution of E|Sds
to

˘T via diffraction catastrophes. In this case one concludes, following
the argument in Section 4(b)ii, that VE =O(1) owing to the absence of vanishing length scales
(namely the vanishing distance |`| from x

o to S) there. As a result, the E-counterpart of (4.22)
takes the form

| ˜BE
�|cod(�E)>1 =

(
O
�
k��min

m
�
, cod(�E) = 1

O
�
k�2�min

m
�
, cod(�E)> 1

(D 8)

where �min
m are given in Table 2. From this result and (D 2), it follows that the full-aperture

contribution of catastrophes with cod(�E)6 3 due to E over Sds scales, at most, as O(k1/3
) –

which again preserves the claim of Theorem 4.6.
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E. Reconstruction of a Neumann obstacle

(a) Single plane-wave incidence

Taking advantage of the ideas presented in Section 3 for a sound-soft obstacle, the proof of
Theorem 4.7 is outlined in more detail with the aim of deriving (4.27). To this end, the use in (2.8)
of the physical optics approximation for a sound-hard obstacle (4.26) yields

T(xo
) = � 2Re



Arui

(x

o
)·
Z

Sf
ui

(⇣)n(⇣)·
Z

� obs
rG(⇠, ⇣)⌦rG(⇠,xo

)d�⇠ dS⇣

� Bui

(x

o
)

Z

Sf
ui

(⇣)n(⇣)·
Z

� obs
rG(⇠, ⇣)G(⇠,xo

)d�⇠ dS⇣
�

. (E 1)

Thanks to (2.13) and (2.14), one accordingly finds that

T(xo
) = 2k2 Re

⇢

A (ie�ikxo·d
)(J3 � J4) + B (e�ikxo·d

) J5

�

, (E 2)

where

J
3

=

Z

Sf
eik⇣·d {

kr



3Re
�

G(x

o, ⇣)
�

+

⇣

3

kr
� kr

⌘

Im
�

G(x

o, ⇣)
�

�

dS
⇣

,

J
4

=

Z

Sf
eik⇣·d 1

kr



Re
�

G(x

o, ⇣)
�

+

1

kr
Im

�

G(x

o, ⇣)
�

�

d·n(⇣)dS
⇣

,

J
5

=

Z

Sf
eik⇣·d



Re
�

G(x

o, ⇣)
�

+

1

kr
Im

�

G(x

o, ⇣)
�

�

n(⇣)· \
(x

o�⇣)dS
⇣

,

(E 3)

and { =

\
(x

o�⇣)⌦ \
(x

o�⇣) :d⌦ n(⇣) .

Contribution of non-degenerate stationary points. On substituting (2.3) into (E 3), one finds
that the Fourier-type surface integrals Jm (m= 3, 4, 5) feature the same phase function ⇣ ·d± r

as J
1

and J
2

in (3.4). Thus the non-uniform asymptotic approximation (3.8), specifying the
contribution of isolated stationary points ⇣

⇤ to T, remains valid. Further, the loci of ⇣⇤ according
to (3.11) and the nature of the affiliated Hessian matrix Apq(⇣

⇤
), examined in Appendix A(a), stay

the same. As a result, the contribution of non-degenerate critical points to (E 2) can be computed
from (E 3), (3.14), (3.16) and (3.18) as

TI±
(x

o
)

k�1

= ± 1

2r

n

2A+ B
o

, r= |xo� ⇣

±
I |, x

o2 I± \ (B1\N✏); (E 4)

TII+
(x

o
)

1

= �
k
p
⇢
1

⇢
2

4

p

(r+r
1

)(r+r
2

)

Im
h

e2ik(d·n)

2r
in

A
�

1�2(d·n)2
�

+ B
o

,

r= |xo� ⇣

+

II |, x

o2 II+\ (B
1

\N✏), n=n(⇣

+

II ); (E 5)

and

TII�
(x

o
)

1

= �
k
p
⇢
1

⇢
2

4

p

|(r�r
1

)(r�r
2

)|
Re

h

e�2ik(d·n)

2r+ i(sgnApq)⇡/4
in

A
�

1�2(d·n)2
�

+ B
o

r= |xo� ⇣

�
II |, x

o2 (II�\CII) \ (B
1

\N✏), n=n(⇣

�
II ) (E 6)

assuming the stationary points of type I, II+ and II�, respectively.
Here it is worth noting that the contribution of TI±

=O(1) can be neglected due to the fact
that TII±

=O(k). Moreover, apart from the sign difference, (E 5) and (E 6) carry exactly the same
structure as their “sound-soft” counterparts (3.17) and (3.19).
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Contribution of diffraction catastrophes. Owing to the fact that the TS formulas (3.4) and (E 2)
share the phase function �= ⇣ ·d� r, the analysis in Section 3(c) concerning the contribution of
degenerate stationary points to the TS, namely Tc, remains unchanged.

Asymptotic expansion for x

o 2N✏. At the stationary points ⇣⇤ of type II±, one has |d·n(⇣⇤)|=
|n(⇣⇤)· \

(x

o�⇣

⇤
)| so that the kernels in Jm (m= 3, 4, 5), when evaluated at ⇣

⇤, are proportional
to |d·n|. With such remark, one may appeal to the argument as in Section 3(d)i to find the
appropriate threshold, ✏> 2⇡/k, for the extent of N✏ according to (3.5).

When x

o 2N✏, the analyses in Sections 3(b) and 3(c) do not apply to the critical points on @S f

that are close to the point of normal projection, x?. Further, the latter becomes a critical point
itself as x

o!x

? due to a lack of differentiability of the kernels in (E 3). In this case, one may
resort to the tangent-plane approximation as in Section 3(d)ii such that, by adopting the change
of variables (3.30) with "= 0, J

3

in (E 3) can be approximated as

J?
3

=

eikx?·d

4⇡

Z1

0

%

(kr0)
4

h

3 cos(kr0) + (kr0 �
3

kr0
) sin(kr0)

i

k` ⇥

⇥
Z
2⇡

0

eik%dt cos(✓)
�

d·nk` � dt k% cos(✓)
�

d✓d(k%), x

o2N✏,

(E 7)

where n=n(x

?
), r0=

p

`2+ %2, and dt=
p

1�|d·n|2. Note that the outer integral in (E 7) has
been conveniently extended to infinity by the use of an implicit neutralizer function [e.g. T2, T3].
The inner integral with respect to ✓, on the other hand, can be expressed explicitly in terms of
the Bessel functions of the first kind, namely J

0

(dtk%) and J
1

(dtk%). Thanks to the identity `2 =

r20 � %2, thus obtained integral over k% can be rewritten as

J?
3

=

eikx?·d

2

Z1

0

%

(kr0)
4

h

3 cos(kr0) + (kr0 �
3

kr0
) sin(kr0)

i

⇥

⇥
n

d·n(kr0)
2 J

0

(dtk%)� d·n(k%0)
2 J

0

(dtk%)� idt k%k` J
1

(dtk%)
o

d(k%), x

o2N✏.

(E 8)

On integrating (E 8) by parts and making use of the integral identities in [T1], the leading-order
contribution of x? to J

3

is found to read

J?
3

=

eikx?·d

2k

h

i d2t sin(|d·n|k`) � |d·n|2
⇣

cos(|d·n|k`)� sin(|d·n|k`)
|d·n|k`

⌘ i

, x

o2N✏. (E 9)

In a similar fashion, the leading-order contribution of x? to J
4

and J
5

can be obtained as

J?
4

=

|d·n|
2k2`

eikx?·d
sin(|d·n|k`), J?

5

= � 1

2k
eikx?·d

sin(|d·n|k`), x

o2N✏. (E 10)

By substituting (E 9) and (E 10) into (E 2), one finds

T?
(x

o
)

1

= �k

2

sin(2k`|d·n|)
n

A
�

1�2(d·n)2
�

+ B
o

, x

o2N✏ (E 11)

to be the leading asymptotic contribution of x

? to T in the case of scattering by a Neumann
obstacle.

On the basis of the above results, the “Neumann” contributions TII± , Tc and T? to the TS are
found to behave as in (4.2), and are incorporated into (4.1) for further analysis.

Contribution of the boundary of the integration domain, @Sf

. In contrast to the case of a
Dirichlet obstacle, the kernels of J

3

and J
5

in (E 3) entering the “Neumann” TS formula (E 2) do
not vanish as ⇣ ! @S f, which warrants further consideration (recall that J

2

! 0 in this case thanks
to the fact that d·n= 0 on S f). Note, however, that if ⇣⇤ 2 @S f is a stationary point of ⇣ ·d± r, the
kernels of Jm (m=3, 5) both vanish there thanks to (3.11); thus, the contribution of such critical
points can be ignored. On the basis of the high-frequency analysis of oscillatory integrals in [T2]
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(Sec. 9.2.1 (a)), the contribution of @S f to (E 3) can accordingly be computed as

J@Sf

m = k�1

X

±

Z

@ ˜Sf

i
�±
,s(t, 0)

g±m(⇣;d) eik�±
dt, �±

(t, s) = ⇣ ·d± r, ⇣ = ⇣(t, s), (E 12)

where m= 3, 5; @ ˜S f ⇢ @S f excludes all ⇣⇤; t is the arclength parameter along @S f; and s> 0 is
a curvilinear surface coordinate on S f, positive inward, that is orthogonal to t (s=0 on S f). The
oscillatory line integrals in (E 12) can be evaluated via techniques introduced earlier, assuming
structurally-stable caustics – if any – of codimension less than three (recall that cod(�±

) cannot
exceed two for 1D integrals). As a result the high-frequency asymptotic behavior of (E 2), i.e. the
“Neumann” counterpart of (4.1), is found to include an additional boundary contribution

T@Sf
=O(k1/2+�

), 06 � 6 3

10

, (E 13)

where the limits on � are established according to Table 2.

(b) Full source aperture

On recalling that the TS integral representations (3.3) and (E 2) share the common phase function
pair ⇣ ·d± r, one finds that the “Dirichlet” analysis in Sections 4(b)i and 4(b)ii applies equally to
the reconstruction of a sound-hard obstacle. As a result, one has

˘T(xo
)

k⌫

= 1

˘N✏
(x

o
)

Z

⌦
T?

d⌦
d

+

Z

˜B�

Tc
d⌦

d

+

Z

S±

|d⇤·n|
r2

TII

±
dS

⇣

+

Z

⌦
T@Sf

d⌦
d

, (E 14)

where ⌫ 6 1/2 and
Z

˜B�

Tc
d⌦

d

= O(k↵), 1

4

6 ↵6 2

3

,

Z

S±

|d⇤·n|
r2

TII

±
dS

⇣

= O(k�), 06 � 6 1

3

. (E 15)

To compute the contribution of nearby critical points to (4.3) when x

o 2 ˘N✏, on the other hand,
(E 11) can be integrated over ⌦

d

as in Section 4(b)iii to obtain
Z

⌦
T? d⌦

d

=

�⇡ k

(k`)3

n

A
�

k` cos(k`)� sin(k`)
�2

+ B (k`)2 sin(k`)2
o

. (E 16)

Remark 1. In situations where a hidden Neumann obstacle D is reconstructed by sampling with

a commensurate (i.e. sound-hard) vanishing scatterer, one should set (A,B) = (3/2,�1) according to

Table 1.

With (E 15) and (E 16) in place, the last step in the analysis is to evaluate the contribution of
the boundary term T@Sf

to the full-source-aperture TS variation (E 14). From the onset, it is seen
that (E 13) itself may exceed the O(k2/3) residual stated in Theorem 4.7 – which can possibly
cause problems. By way of (E 3) and (2.3), however, it can be shown that g±m in (E 12) carry the
intrinsic properties

g±
3

(·,d) = �g±
3

(·,�d), g±
5

(·,d) = g±
5

(·,�d), g+m = ḡ�m, m= 3, 5 (E 17)

where the overbar symbol denotes complex conjugation. Since the “bright” surfaces S f
(d)

and S f
(�d) are complementary, one also finds that s|

d

=�s|�d

for all ⇣ 2 ˜S f, and thus

�±
(t, 0)|

d

= ��⌥
(t, 0)|�d

=) �±
,s(t, 0)|

d

= �⌥
,s(t, 0)|�d

. (E 18)

From (E 12), (E 17) and (E 18), it follows that

J @Sf

3

�

�

d

=

¯J @Sf

3

�

�

�d

, J @Sf

5

�

�

d

= � ¯J @Sf

5

�

�

�d

.

On substituting the last result into (E 2) and (4.3), one immediately finds that

T@Sf �
�

d

+ T@Sf �
�

�d

= 0 =)
Z

⌦
T@Sf

d⌦
d

= 0
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which, in conjunction with (E 14)–(E 16), completes the proof of Theorem 4.7.
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